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Abstract

One contribution of chaos theory to the engineering research community is the notion
that complex, erratic behavior in physical systems need not be the result of stochastic
phenomena-such phenomena may result from deterministic mechanisms. This idea has
been used in the analyses of several engineering systems. Perhaps more interesting are the
several proposed engineering applications that take advantage of the structure of signals
generated by chaotic systems. In order to take full advantage of the unique properties of
chaotic signals in future applications, this structure must be well characterized. This thesis
explores two aspects of this issue-the statistical structure of chaotic signals and the to
linear distortion of chaotic signals.

In the first portion of the thesis, we concentrate on the time-average behavior of signals
generated by chaotic systems with one state variable. Using an analogy between such signals
and stationary stochastic processes, we present a framework for analyzing the statistical
properties of these chaotic signals. In particular, we provide readily computable analytic
expressions for a broad class of statistics of a large class of chaotic signals. We also present
a technique for approximating the statistics of certain chaotic signals for which exact results
are unavailable. As an example of the utility of these results, we use them to determine
the power spectra of chaotic signals and to analyze a model of a switching DC-DC power
converter operating in a chaotic regime.

In the second portion of the thesis, we concentrate on chaotic signals that have been
linearly filtered. Such signals may arise, for example, when chaotic phenomena are measured
through sensors with linear dynamics. We present results relating certain parameters of the
original and distorted signals. These results have several useful consequences. For example,
they are used to synthesize a family of systems that generate "chaotic white noise" and to
deconvolve a chaotic signal from a filtered observation.

Thesis Supervisor: Alan V. Oppenheim
Title: Distinguished Professor of Electrical Engineering

Thesis Supervisor: Gregory W. Wornell
Title: Assistant Professor of Electrical Engineering
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Chapter 1

Introduction

Chaotic models have been applied to the description of physical phenomena ranging from

turbulence in fluids [1] to population dynamics [2]. Each of these applications, has provided

a deterministic explanation for erratic phenomena that have traditionally been described

with stochastic models . What is more interesting from an engineering standpoint is that

chaotic systems and the signals they generate are potentially applicable in a wide range

of engineering settings. In fact, many engineering systems are known to display chaotic

behavior [10, 23, 32, 24].

Because of their special characteristics, chaotic systems also have the potential to be

useful in certain engineering systems. In this context, rather than using a chaotic system to

describe the behavior of an existing system, a chaotic system would be designed to perform

a specific function. Some proposed applications of this type include using chaotic systems

as random number generators and as waveform generators for communication systems.

Although nonlinear systems are quite common in engineering practice, the typical meth-

ods of studying them are often either too unsophisticated or too complex to be generally

applicable. For instance, nonlinear systems are often approximated by linear systems, which

cannot capture the inherently nonlinear phenomenon of chaos. More sophisticated tech-

niques are often cumbersome or inaccessible. It seems plausible then that chaotic signals

and systems would be more widely useful to engineers, both as models used for making

inferences about systems and as components for designing systems, if a precise description

of their properties and a set of convenient analytical tools were available. Given the scope
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of the nonlinear systems theory, this goal may be too ambitious. However, as we shall see,

when attention is restricted to a sufficiently tractable class of systems, some sharp results

can be obtained.

This thesis presents a framework for the study of two of the salient aspects of systems in

two useful classes of chaotic systems. The two classes of systems are quite broad and include

systems that been previously used as models in several applications. The two aspects of

these systems that we will describe are their statistical and geometric structure. In particu-

lar, using an analogy between chaotic signals and stochastic processes, we develop analytic

and computational tools that describe can be used to study the statistics certain chaotic

signals. We then use these results to analyze one example of a real system exhibits chaotic

behavior-a switching power supply. Next we focus on the geometric properties of chaotic

signals and specifically how they are altered by linear convolution. Linear convolution is an

important operation in many signal processing applications and is hence worthy of study.

Moreover, understanding convolutional effects may have implications, for example, when

chaotic phenomena are measured using sensors with linear dynamics.

In the remainder of this chapter, we describe in more detail the contents of the thesis.

1.1 Statistics of Chaotic Maps

In the first portion of the thesis, we focus on signals generated by iterating from some initial

condition the nonlinear difference equation

x[n] = f(x[n- 1]), (1.1)

where f(.) is a real function of a real variable that is also a chaotic system. Although

such one-dimensional systems are in a sense the simplest ones exhibiting chaos, they are

important for two reasons: they have many of the same properties as higher dimensional

systems, and they have been proposed as models for several engineering systems.

We will see that the signals generated by systems of the form (1.1) are analogous to

stationary stochastic processes and as a result, that the notion of statistics is well defined.

The specific statistics can be expressed in terms of expected values taken with respect to
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a certain measure or probability distribution. Furthermore, using classical results from

ergodic theory, it can be shown that statistics of this type can be interpreted physically in

terms of the relative frequency of different events.

. Using a statistical approach certain questions about the average operation of a nonlinear

system may be addressed. Given that design specifications are often given in terms of

averages, this approach is potentially applicable in a wide variety of settings. Also, as we

will see, the average properties of a system often have useful physical interpretations.

We use the statistical approach in Chapter 3 and restrict attention to a class of systems

of the form (1.1), called Markov maps, that are particularly amenable to analysis. These

maps have certain extremely useful qualities and naturally arise several times throughout

this thesis.

Among the more interesting properties of Markov maps is that many of their statistics

can be determined in closed form. We derive these closed form expressions, which depend

on the parameters of the Markov map, for a large class of statistics including all second

and higher-order moments of the signal. These expressions provide not only a readily

computable means of determining individual statistics of a Markov map, but also some

insight into its global statistical structure. For example, we will see that Markov maps

generate signals with rational power spectra which can be determined in closed form.

In Chapter 4 we consider a larger class of systems, called eventually-expanding maps,

which includes Markov maps as a subset along with several maps that have been proposed as

models for physical systems. In general, the statistics of an eventually-expanding map (that

is not also Markov) are difficult to express in closed form. However, we show how Markov

maps can be used to approximate any eventually-expanding map and its statistics arbitrarily

well. Again, the results provide both a computational framework for approximating these

statistics as well as some insight into their structure.

As an illustration of one application of the results of Chapter 3 and Chapter 4, we present

in Chapter 5 an analysis of a switching power converter that is well described by a one-

dimensional chaotic system. We derive a map that relates the currents and voltages within

the converter at consecutive switching times. We then demonstrate how these sampled-

data descriptions can be used to make inferences about the statistics of the converter's
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continuous-time waveforms. In particular, we demonstrate that, even in a chaotic operating

regime, the continuous-time waveforms have cyclostationary statistics.

1.2 Geometric Changes Due to Measurement Effects

In addition to its statistical structure, a chaotic signal often has a geometric structure

that is unique to the system generating it. However, when the signal is filtered by a

linear system this geometric structure may potentially be obscured. In Chapters 6 and 7,

we present a method of analyzing certain aspects of the effect of linear filtering on two

types of chaotic signals: those generated by one-dimensional maps, and those generated by

multidimensional, invertible systems. Since, in practice, chaotic signals may potentially be

measured through media that are well modeled as linear systems, this scenario is worthy of

study.

Chapter 6 concentrates on signals generated by one-dimensional chaotic systems. We

first examine the relation between the input and output of a filter driven by a such a signal.

As we will see, when the filter has a finite length impulse response, the input and output

time series are related by a scalar function, which we term the input-to-output map. We

use the properties of this map to draw several conclusions concerning filtered chaos. In

particular, we show that the output of certain filters may be governed by a one-dimensional

map when the input is governed by a one-dimensional map. For a given chaotic system, we

completely characterize this class of filters.

These results suggest several applications. In particular, using the characterization of

filtered chaos, we determine an algorithm that deconvolves a chaotic signal from a filtered

observation. Some preliminary results on the performance of the algorithm are also pre-

sented. As another application, we show how to construct, given an understanding of the

statistics of chaotic signals, a family of chaotic systems that generate waveforms that are

spectrally white.

In Chapter 7 we extend some of the results derived for one-dimensional noninvertible

systems to multidimensional, invertible systems. In particular, we examine filtered signals

generated by invertible, multidimensional chaotic systems and show that it is useful to inter-
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pret such signals as the output of a composite system that consists of a cascade of a chaotic

system, which corresponds to the input signal, and a linear system, which corresponds to

the filter. We use this interpretation to relate the properties of filtered signal to those of

the unfiltered signal. For example, we will show that an attractor reconstructed from the

filter output is related to the attractor of the unfiltered chaotic signal by a nonlinear point

transformation and discuss some of the implications of this fact. In particular', we demon-

strate how one measure of the geometric structure of a chaotic signal, its so-called fractal

dimension, may potentially be changed by filtering, and determine filters that do not alter

the fractal The latter result has implications for the design of sensors to measure chaotic

signals since accurate sensors should not alter geometric structure.

Many of the results of the thesis depend on classical results from the theory of nonlinear

systems. In Chapter 2, we review some of the relevent results.
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Chapter 2

Random and Deterministic

Dynamics

One contribution of chaos theory to the signal processing community is the notion that com-

plex, erratic behavior in physical systems need not be the result of stochastic phenomena-a

deterministic, nonlinear mechanism may cause such behavior. As a consequence, determin-

istic models may potentially describe these systems more precisely than traditional stochas-

tic models. However, the analysis of such nonlinear models typically requires mathematical

tools and concepts that are not used in traditional signal processing tasks. In this chapter,

we collect some of the less familiar definitions and results from the theory of nonlinear

systems that are most useful in the remainder of the thesis.

We will concentrate on the properties of time series generated by the discrete time

difference equation

x[n] = F(x[n- 1]) (2.1)

y[n] = g(x[n]) (2.2)

where x[n] E I N is the state vector of the dynamical system F: RN + RN, and g: N e 

models a scalar observation of the state. A variety of physical systems evolving in discrete

time steps with no input are well modeled by systems of this form [3].

The time evolution of the model is computed by iterating F to generate the set of state
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vectors, called the orbit associated with x[O], of the form

{x[O], F(x[0O]), F2 (x[0]), (x[O]) ... }

where Fn denotes the nt h iterate of F.

Broadly speaking, the goal of a large body of nonlinear systems theory is to determine

the behavior of the sequence x[n] = Fn(x[O]) as n gets large. Accordingly, the questions

that have been addressed in this respect concern the asymptotic or steady-state behavior

of the system (2.1) starting from a given initial condition. Ideally, for each initial condition

x[0] the state sequence could be determined and its features classified. However, this goal

is too ambitious in the sense that no general analytical tools are available to provide such

information. Nevertheless, some issues related to the long term behavior of the sequence

x[n] can be addressed, at least qualitatively.

Two particularly important issues are what portion of the state space is visited by the

state sequence in the long time limit and with what relative frequency subsets of the state

space are visited by the state sequence. Significant information about the dynamic behavior

of the nonlinear system may be provided by the resolution of these two issues. Indeed, the

two approaches to the study of nonlinear systems that are most useful for the purposes of this

thesis divide roughly along the lines of these two issues. Loosely speaking, the first approach

examines the geometry of orbits generated by (2.1). This is the subject of topological

dynamics. Some useful results from topological dynamics are presented in Section 2.1. The

second approach examines the average properties of state sequences generated by (2.1).

This is the subject of ergodic theory or measurable dynamics. Some results from ergodic

theory are presented in Section 2.2.

2.1 Geometry of Solutions

In this section, we concentrate on ideas related to the geometric properties of solutions.

15
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2.1.1 Steady State Behavior: Invariant Sets

As an initial step toward understanding the long term behavior of (2.1) it is convenient to

single out some common types of orbits. The simplest orbit consists of only one point. A

state vector, x, that is invariant under F-that is, one with the property that F(x) = x-is

called a fixed point of F. Similarly, a fixed point of Fk is called a periodic point and satisfies

F(x) = x. The period of a periodic point is the smallest integer p such that FP(x) = x. The

orbit of a periodic point x with period p, i.e., the p-element set V = {x, F(x), . . ., FP-' (x)},

is invariant under the action of F since each set element's image remains in the set.

Sets more complicated than periodic orbits may be invariant under the action of F. In

general, an invariant set is any set V with the property that F(x) E V whenever x E V.

Invariant sets are of interest because they often provide insight into the the steady-state

behavior of nonlinear difference equations. In particular, many nonlinear models have the

property that state sequences generated from initial conditions in a certain region of the

state space approach a well defined, invariant subset of the state space known as an attractor.

Although several definitions of attractor are used in the literature, they commonly de-

fine an invariant set to which all nearby orbits converge [4]. One more formal definition,

presented here to illustrate the components of a definition of attractor, is a follows: We

denote the image of a set V by F(V), i.e., F(V) = {xlx = F(v), v e V}. A set A C IRN is

called an attractor for F if there is a neighborhood N of A with closure N such that F(N)

is contained in the interior of N and

A = nn>oF0(N). (2.3)

The operational definition presented above is made precise by this more technical definition.

However, because we will not need a particular definition of attractor for what follows, the

operational definition will serve our purposes.

2.1.2 Fractal Dimension of Attractors

Attractors associated with many important nonlinear systems are complex, fractal subsets

of state space that have no volume (i.e. they are set of zero Lebesgue measure) and are
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correspondingly difficult to precisely describe. One property commonly used to characterize

these sets is their fractal dimension. In essence, fractal dimensions quantify the difference

in "size" of sets of zero volume.

.Although there are many definitions of fractal dimension (see e.g. [5]), we shall con-

centrate on only two: the Hausdorff dimension and the box dimension. The Hausdorff

dimension is often the easier of the two to manipulate analytically, however, there is no way

to estimate it from data. Conversely, the box dimension is more applicable to real data but

has several analytically inconvenient features. In this section, we will present the definitions

of these two notions of dimension.

Before defining a fractal dimension, we examine a shortcoming in one intuitive approach

to volume and dimension. Consider a line segment, a plane segment, and a cube in R3.

Although it is perhaps natural to assign these objects dimensions one, two, and three

respectively, only the cube has nonzero volume when viewed as a subset of R3. Thus, the

three dimensional Lebesgue measure is not sufficiently sensitive to distinguish between a

plane and a line. Part of the usefulness of Hausdorff dimension and its associated measure

is that it can distinguish between many sets of Lebesgue measure zero.

From one point of view, the Hausdorff dimension is defined as an byproduct of a gen-

eralized notion of volume. Consider the s-dimensional volume of a subset V of RN, with

s nonnegative, defined by the following two step procedure. First, for any small 6 > 0 we

define

HS(V) = inf :Uis V C U 1 Ui, 0 < Ui[ < } (2.4)

where Uil is the diameter of Ui and each Ui is open. Intuitively, 7/(V) is an approximation

to the volume of V computed summing the volumes of the small sets Ui that cover V. The

term Uil' quantifies the intuitive notion that volumes in s dimensions should depend on

length raised to the power of s. In this definition however, s need not be an integer.

As 6 decreases, 7H(V) must increase and so approaches a limit. The s-dimensional

Hausdorff measure of V is defined as this limit, i.e.,

7V (V) = lim V (V). (2.5)
-- +0
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It can be shown that tS (V) is a measure and many of its properties follow from the results of

classical measure theory. However, the infimum on the right side of (2.4) cannot in general

be implemented numerically. Thus, although Hausdorff measure is analytically convenient,

it is not useful for the numerical study of attractors.

The Hausdorff dimension is defined by noting that the limit (2.5) exists for any subset

V in i n but may be 0 or o. Intuitively, if a set is measured in too large a dimension, it

appears to have no volume; if the dimension is too small, it appears to have infinite volume.

The Hausdorff dimension of V is defined as the smallest s such that the measure is 0 or

equivalently, the largest s yielding an infinite measure, i.e.,

dimH V = inf{s 7s (V) = O} = sup{s: -S/(V) = oo}

The Hausdorff dimension of a set may take a noninteger value, but for well behaved sets its

value agrees with intuition. For example, a smooth surface in IR has a Hausdorff dimension

of two.

Although the Hausdorff dimension has analytically convienent properties due to its

definition in terms of a measure, it is difficult to apply to real data. Another fractal

dimension, the box dimension, is more easily applied to data. The box dimension is defined

as follows. Let Ns(V) be the smallest number of cubes of diameter a that cover V. Then

the upper and lower box dimensions of V are defined by

dimBV = lim inf log(Ns(V))S-+0 - log 6
log(Ns (V))

dimBV = lim sup log
8-+0 - log 6

If these are equal we refer to the common value as the box dimension of V. The Hausdorff

and box dimensions differ in that the former uses a more general cover in its definition.

It can be shown that the box dimension of a set has many of the properties that are

expected from a quantifier of dimension. For example, the box dimension of the unit cube

in N can be shown to be N. The box dimension does have some undesirable properties as

well. For instance, there are examples of countable sets with nonzero box dimension (see
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e.g. [5, 6]).

When we examine the effects of linear convolution on chaotic signals in Chapter 7, we

will need to understand how the Hausdorff and box dimensions of a set are altered when

the set is nonlinearly transformed. As we will presently see, one property that is shared by

both of these dimensions is that they are not altered by invertible transformations that are

sufficiently smooth. We now define the specific notion of smoothness that is most useful in

the sequel. A function P: A -+ IRN+M is Lipschitz if it satisfies

liP(x) - P(y)II clx- Yl1

where the norms are defined on the appropriate spaces. Intuitively, Lipschitz functions have

a bounded growth rate. A function is bi-Lipschitz if it satisfies

c211X - yll < IIP(x) - P(y)II < cllx - yll.

Thus, the growth rate of a bi-Lipschitz function is bounded from below as well as from

above.

The significance of bi-Lipschitz transformations in relation to fractal sets is the following

theorem.

Theorem 1 If P A -+ IRN+M is a bi-Lipschitz transformation, then the Hausdorff dimen-

sions of A and P(A) are equal.

Thus, bi-Lipschitz transformations do not change fractal dimension. It follows that smooth,

smoothly invertible coordinate changes cannot change the dimension of a set.

2.1.3 Relations Between System Properties and Time Series Properties

We now turn to properties of time series generated by scalar observations of the state of

a nonlinear system. It can be shown that, in this context, the class of nonlinear systems

is much too large to work with as a whole; virtually no precise statement can be made

about the entire class. In particular, with no restrictions on F and g, the class of models of

the form (2.1) and (2.2) can generate any bounded time series. This section presents two
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examples designed to illustrate this point.

If the dimension of the state space is infinite, then a there is a system F and observation

function g that can produce any finite, causal time series. Let the state space, X, be

the space of bounded, right sided sequences. If x is such a sequence, we denote its i-th

component by (x)i. In other words, each element, x E X is of the form

=), (x), (X)2, - --

Now suppose F is the shift operator and g observes the 0-th component of a state vector,

i.e.

(F(x))i = (x)i+1 , i = 0,1,2,...

g(x) = (x)o.

With these definitions, F and maps the state space to itself. This system can generate any

bounded time series by a proper choice of initial condition. In essence, by choosing the

initial condition, the entire time series is chosen. The implication is that simply specifying

that a signal was generated deterministically does not significantly limit the possible range

of time series behavior.

One might guess that the complex behavior illustrated in the previous example is related

to the dimension of the state space. On the contrary, complex behavior is possible even in

one dimensional state spaces as the following example shows.

A system that is equivalent to the shift of the previous example can be constructed

on a one-dimensional state space. According to a classical result from real analysis, the

set of right-sided sequences of real numbers has the same cardinality as the unit interval

I = [0, 1] (see, for example, [7]). This means that the points of the interval I can be put

into one-to-one correspondence with the points of the space X. Let : I - X denote

this correspondence. Since S is one-to-one it is invertible. As a consequence, each state

sequence generated by F corresponds to a sequence in I. This corresponding sequence can
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be determined by the following map:

x[n] = 0- 1 (F(O(x[n - 1])))-f (x[n - 1]),

where f is a scalar function mapping I to itself. The corresponding output time series is

generated by the observation equation

y[n] = g(q(x))_h(x).

Thus, the one-dimensional map f along with the observation function h generate the same

collection of time series that the infinite dimensional map F and observation function g do.

A similar construction could establish this type of equivalence between any two systems

operating on subsets of finite dimensional spaces.

The construction presented in the previous example is not meant to suggest a practical

method for designing signal generators. Indeed, the correspondence function b is exceedingly

complicated and could never be implemented by any finite precision machine. However, the

example does illustrate the point that without narrowing the scope of inquiry, virtually no

precise statements can be made about the behavior of nonlinear systems. Since both systems

produce the same time series, it follows that joint specifications on the state space, the map

and the observation function are necessary to constrain the possibilities. In general, these

specifications consist of some restriction on the dimension of the state space, and smoothness

conditions on F and g.

In the remainder of this thesis, we will concentrate on two classes of systems. The first

class is that of piecewise continous one-dimensional maps. Such maps appear in models

of many engineering systems and physical phenomena [8, 9, 10].The second class consists

of differentiable maps from IRN to itself with a differentiable inverses, i.e., diffeomorphisms

of RN. Such models appear for example in the study of the time sampled evolution of

continuous time differential equations [11].
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2.1.4 Observability of Nonlinear Systems

In many situations, the entire state of the map F cannot be measured, either because it is

inaccessible or because a full measurement would be prohibitively complex. It is natural to

ask then what information about the entire state can be inferred from a scalar measurement

like (2.2). For instance, we may be interested in whether the geometry of a system's attractor

can be determined from a time series observation. We will see in this section that, loosely

speaking, when F is a diffeomorphism and g is a differentiable observation function, an

image of the system's attractor can be recovered from a time series observation to within

a smooth, nonlinear coordinate change. An important consequence of this result is that

properties of an attractor that are invariant to smooth nonlinear coordinate changes may

be measured from a time series observation. We will present an application of this result

in Chapter 7 where we explore the effects of linear time invariant filtering on chaotic time

series.

One approach to inferring properties of the vector state sequence x[n] from the scalar

observation time series y[n] is to somehow transform y[n] into a sequence of vectors. A

widely used transformation of this type, called time delay reconstruction, maps y[n] into

the sequence of vectors defined by

y[n]

y[r.- 1]x[n] = y[n- (2.6)

y[n - L + 1]

where L is an integer specifying the dimension of R[n]. The vector R[n] is referred to as the

reconstructed vector.

A relation between x[n] and [n] can be derived by substituting (2.1) and (2.2) into
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(2.6) to obtain

g (x[n])

54n] _ g(F-' (x[n])) _ 4(FxgL)(X[]). (2.7)=kn (2.7)

g(F-L+l (x[n]))

We refer to the map (F,g,L)(x[n]) as the reconstruction transformation. Thus, the recon-

structed vector can be written as a nonlinear transformation of a state vector. As (2.7)

makes explicit, the properties of the reconstruction transformation depend on L, g and F.

What is remarkable about (2.7) is that, in general, for sufficiently large L and sufficiently

smooth F and g, the reconstruction transformation is smooth and invertible with a smooth

inverse. Thus, under certain conditions, the reconstruction transformation is a smooth

coordinate change.

The next theorem makes the last statement precise using the topological notion of a

generic property, which is defined as follows. Denote by D the set of all pairs (F, g), where

F is a twice differentiable diffeomorphism mapping a compact subset X of 1 N to itself and

g is twice differentiable. Open sets in D may be defined through an appropriate norm. A

property is generic for systems in D if it is possessed by systems in some subset of D that is

open and dense, or a countable intersection of open dense sets. Thus, generic properties are

typical in the sense that they are possessed by a large subset of systems in D. Furthermore,

if a system F D does not possess a particular generic property, another system arbitrarily

close to F does.

Theorem 2 (Takens [1]) Let X be a compact subset of IRN. For pairs (F,g), with F

X -- X a twice differentiable diffeomorphism and g: X -+ R a twice differentiable function,

it is a generic property that the map b(F,g,2N+1) X -+ IR2 N+l. is a diffeomorphism of X

in 1R2 N+1

Thus, a large class of systems have the property that their state sequences may be

observed (to within a smooth invertible coordinate change) from a smooth scalar mea-

surement of the state. This has a major implication for chaotic time series analysis since

some properties of the state vectors are invariant to smooth coordinate changes and hence
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may be measured from time series observations. See [1],[12],[13], and [6] for more detailed

discussions of this issue.

2.1.5 Multiple Operating Regimes of Nonlinear Systems

Certain a nonlinear systems may operate in one of several qualitatively different regimes,

depending on its initial condition,. The simplest example of such behavior is a globally stable

system with two distinct attracting fixed points. As this system evolves, one collection of

initial conditions approaches one fixed point while another collection of initial conditions

approaches the other fixed point. In general, a system with multiple regimes of operation

can be analyzed using a "divide and conquer" strategy of examining the system separately

in each qualitatively different regime. Returning to the previous example, the system with

two fixed points has the property that, with respect to steady state behavior, it may be

decomposed into two separate systems, each with a single stable fixed point. These two

systems, obtained by restricting the definition of the original system to appropriate regions

of the state space, represent two different steady state operating regimes. In essence, this

procedure breaks the attractor (the two fixed points) into pieces which cannot be further

decomposed.

We will see below that the notion of breaking an attractor in to its smallest pieces

provides a helpful way of interpreting certain time series generated by nonlinear systems.

Of particular interest in this context are attractors which cannot be decomposed into smaller

pieces. A system with an indecomposable attractor is called topologically transitive. More

precisely, a map F: X -+ X is said to be topologically transitive if for any pair of open

sets U, V E X there exists an n > 0 such that Fn(U) n V # 0. It can be shown that, as a

consequence of this definition, the attractor of a topologically transitive system cannot be

decomposed [4].

Another important property of topologically transitive systems, which has implications

for time series analysis, is that their entire attractor geometry can be recovered from time

series observations. This result follows from the fact that these systems possess dense orbits

[3, 4]. In particular, suppose F has an attractor X and a state sequence x[n] that is dense in

X and a time series observation of the form (2.2) is available. By the embedding theorem,
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the vectors *[n] generated from y[n] by time delay reconstruction are in general related to

x[n] through a nonlinear coordinate change. Thus, since the set {x[n]} is dense in X and

because the the reconstruction transformation is smooth, the geometry of the attractor can

be observed from time series given sufficient data.

2.1.6 A Definition of Chaos

Because of the broad scope of nonlinear systems research, no standard definition of chaos

exists in the literature. However, many notions of chaos try to capture precisely the property

that two state sequences generated from arbitrarily close initial conditions will eventually

diverge to very different state values. This notion, called sensitive dependence on initial

conditions is defined as follows. A map F: X - X has sensitive dependence on initial

conditions if there exists a 6 > 0 such that for any x E X and any neighborhood U of x,

there exists a y E U and n > 0 such that tIF'(x) - Fn(y)ll > .

The definition of sensitive dependence on initial conditions does not say that all points

in a neighborhood of x generate state sequences that diverge. Some points may, in fact,

generate state sequences that converge to the state sequence generated by x. It is this

combination of divergence and convergence that results in the complicated structure of the

some chaotic attractors.

In the remainder of the thesis, we will concentrate on systems with a strong form of

sensitive dependence on initial conditions. These systems have the property that whenever

two nearby state sequences diverge, the distance between them increases exponentially, at

least in the short term. In Section 2.2.4 we shall describe a commonly used quantifier of

this exponential divergence called Lyapunov exponents.

2.2 Statistics of Solutions

Distinct from the geometric approach to nonlinear system analysis, is an approach based

on the system's average properties. We will see that many nonlinear systems can be viewed

in the same framework as stochastic processes using the tools of classical ergodic theory.

In this context, we will refer to the statistical properties of chaotic signals even though the
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entire signal generation method described by (2.1) and (2.2) is deterministic. An important

point, which will be revisited below, is that a statistical approach to the analysis of nonlinear

systems need not depend on the assumption of a random initial condition, although this

assumption may sometimes prove convenient.

As with stationary stochastic processes, time series derived from state sequences of many

chaotic systems have the property that their time averages are equivalent to ensemble av-

erage taken with respect to a distribution function. Through this equivalence, the average

properties nonlinear system can, at least in principle, be computed precisely without re-

lying on empirical time averages. Thus, certain chaotic systems may be analyzed without

resorting to exhaustive simulations. This is a great advantage, for example, for the many

chaotic system that are difficult to simulate on digital computers because of finite precision

effects.

The mixing of deterministic and stochastic notions is not as odd as it may first appear;

certain natural questions concerning deterministic systems, such as what fraction of time a

state sequence spends in any given region of the state space, have decidedly probabilistic

connotations. Ergodic theory, which concerns among other things the statistical proper-

ties of certain nonlinear systems, is the natural framework within which to answer such

questions. The key property of the nonlinear system F of (2.1) that allows ergodic theory

to be applied is that there exists a probability distribution it that is invariant to F; that

is, at each time n, the state vector x[n] is distributed according to whenever the initial

condition x[O] is distributed according to #. Such systems are called measure preserving

transformations and u is called an invariant measure.

Ergodic theory is flexible enough to be applied to both deterministic and stochastic

systems primarily because is was developed using highly abstract models for the systems

involved. Accordingly, many of its results are qualitative in nature. However, we will see in

subsequent chapters that these qualitative results form the basis of a quantitative analysis

of a large class of chaotic systems.

The statistical approach models the state space of a nonlinear system as a measure

space, i.e. a triple (, S, ) consisting of a set Q, a a-ring S and a probability distribution

or measure / defined on S. This is a more detailed model than that used in Section 2.1 in
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that the state space is assumed to consist not only of a set of states (), but also a measure

(p) describing the distribution of states, and a collection of measurable sets () for which

the measure is defined. The measure of a measurable set A is denoted /(A).

Because we will always work with measures that are normalized to 1 in what follows (i.e.

, (Q) = 1) the triple (Q, S, /) is a probability space. Thus, p gives the size of any set in S

as a fraction of the size of Q. Note that this the designation of y as a probability measure

does not mean that the states are "random". However, we will often use the probabilistic

terms event and probability to refer to a particular measurable set and its measure.

We will restrict our attention to maps that have certain properties that allow them

to be conveniently analyzed. In particular, the tools of ergodic theory naturally apply

to systems (2.1) and (2.2) with the property that sets that map to measurable sets in

Q or IR are themselves measurable. Such F and , called measurable transformations,

satisfy F-1 (A) E S whenever A E S and g-l(E) E S whenever E is a Borel subset of

the real line. It is also useful to restrict attention to systems that that do not map sets of

nonzero probability map onto sets of zero probability. Such a map F, so-called a nonsingular

transformation, has the property that p(A) = 0 implies that 4t(F-(A)) = 0. Finally, to

ensure that expected values are well defined in terms of integrals, we often require that g

be integrable with respect to u, that is, that g must satisfy

jlglj J jgj d/ < oo.

Such a g is said to be /-integrable with norm jigIj. The collection of such integrable functions

is denoted L1 (Q, y) or simply L1 hen the measure is obvious from context.

2.2.1 Invariant Measures and the Frobenius-Perron Operator

A central issue in the statistical approach to nonlinear system analysis concerns how a

distribution of states evolves as the map F is repeatedly applied. As mentioned previously,

certain distributions have the property that they are invariant to the application of F.

Because these invariant distributions are important for what follows, we define them more

precisely and describe some of their properties.
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Suppose that the measure p describes a distribution of initial conditions x[0] and that

p/ describes the distribution of x[1], i.e., the points of the form F(x[0]). Then tL is defined

by the relationship

/l,(A) = (F-(A))-

for all measurable sets A. More generally, n, the distribution of x[n], is defined by

p/(A) = /t(F-' (A)). (2.8)

An invariant measure is one satisfying wn = I for all n > 0. Equation (2.8) implies that

when is invariant with respect to F, it satisfies the relationship,

/(A) = (F-1'(A)). (2.9)

Although all of the systems that we will study in this thesis have invariant measures, it is

important to emphasize that, in general, this need not be the case. Examples of systems

with no invariant measure can be found in [14].

The evolution of measures described by (2.8) has a probabilistic interpretation. Suppose

for the moment that the initial condition x[0] of the map F is random and described by the

probability distribution u. Then x[n] = F'(x[O]) is random with probability distribution

p/. When i, = i for all n the state vector has the same probability law for all time.

We will presently see that this probabilistic analogy allows certain nonlinear systems to be

viewed as stochastic processes.

When has a density p, the measure of a set is defined by

I(A) = JA p(x) dx

for all measurable sets A. Since F is nonsingular, /1 also has a density, which we denote

by Pl. According to (2.8), the two densities satisfy

IA p (x) dx =F -1(A) p(x) dx. (2.10)
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Because (2.10) holds for any probability measure ,u defined by a density, it can be shown

[15] that (2.10) defines a unique linear operator which we denote by PF. The operator PF

maps integrable functions to integrable functions and satisfies

A PFP(X) dx J = (AFt) p(x) dx. (2.11)

With this definition of PF, the initial and time one densities are related by

PFP = P.

The operator defined in (2.11), commonly called the Frobenius-Perron (FP) operator,

compactly describes how densities of states evolve under the application of F. Again,

speaking probabilistically, when x[0] is random and governed by a probability density p,

then x[1] = F(x[0]) is random and governed by the probability density PFP

An invariant density, i.e. one associated with a measure satisfying (2.9), satisfies the

equation

PFP = P.

This is a fixed point equation in the infinite dimensional space of integrable functions and

is difficult to solve in general. However, we will see in Chapters 3 that for certain maps

the invariant density can be determined exactly. We will also see how the invariant density

forms the basis for a numerical approach to the statistical analysis of chaotic systems.

2.2.2 Relating Chaotic behavior and Stochastic processes

In this section, we will explore the connection between nonlinear systems and stochastic

processes and in particular, the manner in which their associated time series are generated.

A discrete time stochastic process is an indexed set of random variables. More specifi-

cally, suppose (, S, pu) is a measure space. A sample sequence of the stochastic process is

determined by choosing a point of w E Q randomly according to the probability distribution
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p. Associated with each w is a sequence

f.[0], f[1], f.[2], - - (2.12)

The stochastic process is comprised of sequences of the form (2.12). For fixed k, f,[k] may

be viewed as a random variable. From this point of view, properties of the stochastic such as

stationarity, independence and correlation are relation between the random variables f[k].

For example, one implication of stationarity is that E{f f,[k]} is independent of k.

Once the random experiment is performed, w is fixed and the sequence (2.12) is deter-

mined for all k. Thus, the properties of any particular sequence can be studied outside of

any probabilistic framework. One subset of the theory of stochastic processes seeks to relate

the properties of individual sequences-typically a time average-to those of the ensemble-

typically an average over Q. As we shall see in the next section, such an approach can be

applied to chaotic signals as well.

A chaotic sequence with random initial condition is a stochastic process whenever the

nonlinear system is a measurable transformation. Each member of the ensemble of sequences

generated by (2.1) and (2.2) is of the form

g(x[0]), g(F(x[0])), g(F 2 (x[0])),.... (2.13)

A relation between the sequences of (2.12) and (2.13) is determined by the correspondences

w = x[0] and

f/[k] = g(Fk(x[0])).

Again, as above, once the initial condition is chosen, the chaotic sequence is determined for

all time.

The primary feature distinguishing chaotic sequences generated by smooth nonlinear

systems from more general stochastic processes is that for different values of k, the functions

g o Fk of (2.13) are necessarily closely related to one another because of the smoothness of

F and g. On the other hand, more general measure preserving transformations need have

no structure other than measurability and nonsingularity.
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It can be shown that if F is a measure preserving transformation and the initial con-

dition x[O] is distributed according to the invariant measure, the resulting process, (2.13),

is stationary. In fact, it can be shown that every stationary process can be modeled by

an observation of a measure preserving transformation of the form (2.13) [16]. Again, the

general stationary stochastic processes and ensembles of chaotic sequences differ primarily

because of the smoothness of F and g.

2.2.3 Relating Time and Ensemble Averages

Given the close relationship between chaotic time series and stochastic processes, it is not

surprising that similar analysis techniques apply to both areas. In particular, time averages

of chaotic signals can be related to ensemble averages taken with respect to an invariant

measure.

Before proceeding to relate time averages to ensemble averages, the existence of time

averages must be established. The existence of the limit

n-1

g(x[O]) = lim E g(F(x[O])). (2.14)
n--+o n k=O

for arbitrary measurable functions g is a classical problem of ergodic theory. The Birkhoff

ergodic theorem asserts that the average (2.14) converges when F is measure preserving.

Theorem 3 (see e.g. [16]) Let (Q,S,,u) be a probability space, F: - a measure

preserving transformation, and g E L' (Q, u). Then

1. limn-+ 1 -k- g(Fk(x)) = §(x) exists almost everywhere;

2. g(F(x)) = (x) almost everywhere;

3. (x) e L1, and 11l11 < 11g1;

4. if A e S with F (A) = A, then fAg d = fA dp;

5. limn,-+ n Ek- g(Fk(x)) -+ (x) in L.

Note that the time average g(x) may depend on the initial condition of F. When g(x) is in-

dependent of x, i.e., when its value is constant, F is referred to as an ergodic transformation.
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We will define ergodicity more formally below.

As discussed in Section 2.1.5, a nonlinear system may potentially operate in one of

several different regimes depending on its initial condition. We saw that this could occur

when the attractor of the system is decomposable. The notion of indecomposable attractors

lead to the definition of topological transitivity. The analogous notion in ergodic theory is

metric transitivity or ergodicity. Ergodic transformations are those for which the invariant

measure is indecomposable. The property of ergodicity also isolates the important class of

systems for which the time averages (2.14) are independent of initial condition.

In order to formally define ergodicity, we first require a definition of invariant set which

takes into account the measure space setting of the current discussion. A set B e S is called

invariant if ,t(f-1 (B)AB) = 0 where A is the symmetric difference AAB = (A-B)n(B-A).

Note that this definition of invariant set differs from that given in Section 2.1.1. A measure

preserving transformation is ergodic or metrically transitive if the only invariant sets have

measure either 0 or 1. A consequence of the definition of ergodicity is that an invariant

measure, l, cannot be decomposed into smaller nontrivial measures. In other words, if F is

ergodic and , = a/2 + b/2 with /p and b defined on disjoint invariant sets, then either

la = 0O or Lb = 0.

When F is ergodic, it can be shown that the time average (x) is constant almost

everywhere, i.e. it is almost everywhere independent of the initial condition. It follows from

the Birkhoff ergodic theorem that for ergodic transformations,

= gdlt. (2.15)

Thus time and ensemble averages are equal only for ergodic systems.

Birkhoff's theorem implies a special role for integrals with respect to the invariant density

of a system as in (2.15). We will often refer to such integrals as expected values. Using

this terminology, it is now possible to refer to many statistics of deterministic systems in

familiar terms. For example, the autocorrelation sequence of a chaotic signal is of the form

R=:[k] = E{x[n]x[n + k]}
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where E denotes expectation. Similarly, a chaotic signal's power spectrum is the Fourier

transform of its autocorrelation sequence.

2.2.4 Quantifying Sensitivity to Initial Conditions

In addition to arithmetic averages of the form (2.14), geometric average also arise occasion-

ally in the study of stochastic processes. In the case of matrix functions of a stochastic

process, these averages are of the form

A(x[O]) = lim (M(n,x[O]) T M(n,x[O]))2n (2.16)
n-+oo

where

M(n, x[0]) = M(x[n - 1])M(x[n - 2]) . . M(x[0]).

The Multiplicative Ergodic Theorem, due to Oseledec [17], asserts that under some mild

restrictions, geometric averages of the form (2.16) exist.

The Multiplicative Ergodic Theorem (MET) is phrased in terms of general measure

preserving transformations. However, when F is also differentiable, the MET has an inter-

pretation in terms of quantifying sensitivity to initial conditions. Specifically, consider a

nominal state state sequence generated from an initial condition x[0] and a state sequence

generated from the perturbed initial condition x[0] + . We wish to quantify how these two

state sequences diverge from or converge to one another. To this end, define the difference

between state values

d(n, , x[O]) = Fn (x[O] +A) - Fn (x[O]). (2.17)

By linearizing d(n, A,x[O]) in its second argument, first order information concerning its

may be obtained for the case of small perturbations . Differentiating (2.17), we obtain

that the linearized difference is of the form

d(n, A,x[O]) = DFn (x[O])A, (2.18)
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where DF is the Jacobian of F. Using the chain rule, (2.18) can be written in the form

d(k, A, x[0]) = DF(F (x[O]))DF(F 2 (x[0])) DF(x[0])A. (2.19)

Setting M(x) = DF(x), we see that the conclusions of the the MET hold for the product

(2.19).

In particular, the MET asserts that there are numbers ai(x), commonly called the

Lyapunov exponents of F, such that for large n

Ild(n,x[O], A)I = [[DFn(x[])A[ ~ e ( )n (2.20)

It follows from (2.20) that when al > 0, the norm of the linearized difference grows expo-

nentially for large n. The implication is that state sequences generated from nearly identical

initial conditions may diverge exponentially.

By definition, the expression for the linearized difference d(n,x[0],A) holds only for

small A, so the exponential divergence of state sequences will occur only until the linear

approximation ceases to be accurate. It should not be surprising that systems with positive

Lyapunov exponents have sensitive dependence on to initial conditions [3]. The Lyapunov

exponents provide a quantitative measure of this sensitivity by providing rates of divergence.

Because they address very different types of questions, the geometric approach and

the statistical approach to nonlinear systems analysis are complementary. In subsequent

sections we shall use both as a framework for a quantitative study of the statistical behavior

of a specific class of chaotic systems as well as an investigation into the effects of linear

distortions on chaotic signals.
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Chapter 3

Statistical Properties of Markov

Maps

In this chapter and the next, we consider signals generated by what are arguably the

simplest chaotic systems - those with only one state variable. Such signals are generated

by the recursion

x[n] = f(x[n- 1]), (3.1)

where f maps scalars to scalars.

As demonstrated by the examples of Chapter 2, restricting attention one-dimensional

systems may be no restriction at all; one-dimensional systems can generate the same signals

that higher dimensional systems can. A less general approach allows some sharp statements

to be made. In particular, we shall concentrate on a class of one-dimensional systems that

are piecewise-smooth. The detailed definition of the class will be deferred until a subsequent

section. For now, it suffices to say that the class includes systems that have been proposed

as models for a variety of engineered systems and physical phenomena.

This chapter and Chapter 4 have the specific goal of determining the statistics of certain

one-dimensional systems. We consider a class of statistics broad enough to include those of

interest to signal processors - for example the autocorrelation and all higher order moments

of the process generated by the system. The chapters differ in the class of systems consid-

ered. In this chapter, we consider a class of piecewise-linear systems that can be analyzed
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Figure 3-1: The Tent Map of Eq. (3.2)

exactly. In Chapter 4, we consider a much larger class of piecewise-continuous systems that

admit an approximate analysis.

We begin this chapter with a motivating example. The remainer of the chapter factors

into three parts. First, we define the class of maps and the class of statistics that will be

studied. Next, we determining analytical expressions for the statistics. Finally, we make

some general observations concerning the structure of the statistics.

3.1 A Motivating Example

In this section we motivate the results in the remainder of the chapter by deriving an

expression for the power spectrum of a simple chaotic map. The result presented here is

not new-it was first reported in [18]. However, our derivation has two advantages over

that of [18]: it is substantially simpler and, more importantly, it can be generalized to

apply to a much larger class of maps.

We wish to determine the power spectrum of the stationary process generated by the

map

f~x) = 0 < x < a(32a <x<af W ) {±L (3.2)
y-l a < x < l

by computing the Fourier transform of its autocorrelation sequence. The map f generates

time series of the form x[n] = f(x[n - 1]) so the k-th autocorrelation lag of the process is
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of the form

Rx[k = E{x[n]x[n + k]}

- E{x[n]fk(x[n])}. (3.3)

The expected value (3.3) is taken with respect to the marginal density of x[n] or more

precisely, the invariant density of the map f.

The invariant density must be determined in order to compute the expected value (3.3).

According to the discussion of Section 2.2.1, the invariant density of f is a fixed point its

Frobenius-Perron operator. Although this fixed point is difficult to determine for general

maps, in this special case a solution straightforward. The FP operator corresponding to f

relates the probability density of x to that of y = f (x) and has the form

Pfp(x) = ap(ax) + (1 - a)p(1 - (1 - a)x). (3.4)

It follows that invariant density satisfies

p(x) = ap(ax) + (1 - a)p(1 - (1 - a)x). (3.5)

A solution is the uniform density

1 0< x<l
p(x) = j (3.6)

0 otherwise

as can be verified by substitution into (3.5). We shall take the expected value with respect

to this density.
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Using (3.6), we

of manipulations:

Rxx[k]

can relate consecutive autocorrelation values through the following series

= E(x[n]x[n+ k])

= Ao 1 xfk(x)dx

= Ja]xfk(x)dx + jXa, xfk(x)dx

= a2 [o ]xfk(x/a)dx - (1 - a)2 j[o1]x fk(l -(1-

+ ( (- a)fk(1 - (1- a)x)dx

= a2 oxfk-l(x)dx - (1- a)2 oxfkl(1- (1

+ ± (1 -a)fk-X (x)dx

= (2a- 1) j k(x)dx + a)k(x)dx

= (2a - )Rxx[k - 1] + (1 - a)E(x).

(3.7)

-a)x)dx

- a)x)dx

(3.8)

The second equality is a result of the definition of the expected value and the uniform

invariant density; the third is obvious; the fourth is a result of the substitution y = in the

first term and y = in the second; the fifth follows from the the definition of the map f;

collecting terms yields the sixth; and the seventh is an application of the definition of the

autocorrelation.

The derivation of (3.8) is valid for k > 0. For k < 0, we have Rxx[k] = Rxx[-k] since

the autocorrelation sequence is conjugate symmetric and x[n] is real. Using in (3.8) the

quantities R~x[0] = E(x2 ) = 1/3 and E(x) = 1/2, which both follow from the form of the

invariant density (3.6), we obtain that the Fourier transform Rxx[k] is of the form

Sx (elW)_1 1
$xx(eJw) - 12(1- (2a- 1)z)(1 - (2a- 1)z- 1) z=ejW + rJ(w).

Thus, the power spectrum associated with f is that of a first order autoregressive process

with mean 1/2.

The technique presented in the sequel is more general than the example of this section-
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it computes a larger class of statistics for a larger family of maps. The present example does,

however, illustrate the approach we will take in the sequel. In particular, the derivation

relied on the explicit form of f and its piecewise linearity. In the next section, a class

of piecewise-linear systems called Markov maps, unique because their statistics can be

determined in closed form, is introduced and analyzed. As the Markov maps include the

tent maps presented in this section, the results of this section will be special cases of more

general results.

3.2 Piecewise-Linear Markov Maps

The main objects of study in this chapter are the eventually-expanding, piecewise-linear

Markov maps. These maps, which are defined below, were first introduced because their

invariant densities exist and can be exactly determined [19, 20]. Very little subsequent

work has been directed toward understanding their more general statistical properties. The

following sections explore these more general properties.

Eventually-expanding, piecewise-linear, Markov maps are one-dimensional chaotic sys-

tems which are amenable to analysis. They are defined as follows.

Definition 1 A map f: [0,1] -+ [0, 1] is an eventually-expanding, piecewise-linear, Markov

map if and only if

1. There is a set of partition points 0 = a < a < ... < aN = such that restricted to

each of the intervals (ai-1, ai), the map f is affine, i.e. f ((,a) = six + bi.

2. For each i, f(ai) = a3 for some j.

3. There is an integer k > 0 such that inf~E[0, ] Id fk(x)l > 1.

Thus, an eventually-expanding, piecewise-linear Markov map consists of a finite number of

affine segments; maps partition points to partition points; and is strictly expanding after

a finite number of iterations. For example, the tent map (3.2) is an eventually-expanding,

piecewise-linear, Markov map. In fact, all of the maps we will examine in this chapter are

eventually-expanding, piecewise-linear Markov maps. Rather than repeatedly using this
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Figure 3-2: An Example of a Piecewise-Linear Markov Map with Two Partition Elements

cumbersome but precise name, the abbreviated name "Markov maps" will be used when

there is no possible ambiguity.

It is appropriate here to introduce some notation that is useful in the subsequent devel-

opment. The interval [ai-1 , ai] is called the i-th partition element and denoted by Ii. By

definition, Markov maps take partition points to partition points and hence map partition

elements onto unions of partition elements. We denote by /i the set of indices of partition

elements in the image of Ii. With this notation, the image may be expressed in the form

f (I) = Uj E Ii.

Figure 3-2 shows the graph of the simple Markov map

1-ax+a 0 < x< af(x) a -- (3.9)

Tla(l-x) a<x<l

This map has partition elements I = [0, a] and 2 = [a, 1]. The index sets associated with

the partition elements are 1 = {2} and 12 = {1, 2}.

More generally, the dependence of a Markov map on its parameters is made explicit in
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the following functional form:

N

f(x) - (six + bi)Xi(x), (3.10)
i=1

where the Xi(x) is the indicator function

1 if x E Ii
Xi(x) = (3.11)

0 otherwise

As a result of the eventually-expanding property, the slopes satisfy sil > 0. It follows that

Markov maps are nonsingular transformations (see Section 2.2).

As mentioned in Section 2.2.1, analyzing a chaotic systems using a statistical approach

requires it to have an invariant measure. All Markov maps have invariant measures (see

[19] for a proof). The next section shows how these measures can be explicitly determined'.

3.3 Computing the Statistics of Markov Maps

An important property of Markov maps is that many of their statistics can be calculated

in closed form. Section 3.1 presented an example calculation for the special case of the

autocorrelation of the tent map. This section, introduces a broad class of statistics that

can be solved for in closed form.

We will derive closed form expressions for statistics of the form

Rf;ho,hI,...,hr[kl,.. ..,kr] = E{ho(x[n])hj(x[ + k1]) ... hr(x[n + krl)}, (3.12)

when x[n] is a time series generated by a Markov map f. These statistics, which we

call correlation statistics, include the autocorrelation and all higher order moments of the

process generated by f. The broad definition of correlation statistics makes them potentially

applicable in a number of chaotic data analysis and synthesis problems. Two applications

l'An invariant measure of a Markov map is smooth with respect to Lebesgue measure. Coupled with the
piecewise-linearity of the map, this implies that, formally, the rules of classical calculus can be used rather
than those of measure theory for our statistical calculations in the following sections.
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are presented in this thesis: Chapter 5 presents a statistical analysis of a switching power

converter; Chapter 6 presents a method of synthesizing Markov maps with white power

spectra.

The statistics of a chaotic system depend on its Frobenius-Perron operator. One con-

nection between statistics and the FP operator is that the expectation of (3.12) is taken

with respect to an invariant density that is in turn a fixed point of the FP operator. Invari-

ant density aside, the FP operator is involved in the computation of correlation statistics

at a more fundamental level. In particular, it can be shown that the FP operator satisfies

the relationship

hl(x)Pfh2(x)dx = hl(f(x))h2 (x)dx (3.13)

for all integrable h. The correlation statistic of (3.12) can be written in the form

Rf;hoh . hr[kl,.. ., kr] =J[ ho(x)hl(fk (x)) ' hr(fkr(x))p(x)dx (3.14)

where p(x) is the invariant density of the map f. Repeated application (3.13) to (3.14)

yields

Rf;ho,hi ... [k, kr] =

1hr()( p- (hr_(x) ... 2 l(h ()f (ho(x)p(x)))...)dx. (3.15)

Equation (3.15) explicitly displays the relationship between the FP operator of a map and

its correlation statistics. This relationship is valid not only for Markov maps but for all

nonsingular one-dimensional maps-a fact we shall make use in Chapter 4. For Markov

maps we will show below that (3.15) suggests a strategy for computing the integral in

closed form. As a first step toward this end, the invariant density must be determined.

3.3.1 Invariant Densities of Markov Maps

Markov maps have invariant densities that can be determined in closed form. As the

invariant density must be known in order to determine the correlation statistics (3.15), this

result is of significant interest. The derivation of the closed form solution for the invariant
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density of a Markov map was first reported in [20] and later in [19]. We include it here for

primarily for completeness and to lead into the discussion of more general statistics.

The FP operator for nonsingular, one-dimensional maps of the form

N

f(x) = Efi(x)Xi(x)
i=1

is (see [15])
N h (fg- I(x))Xf, .,) (x)

(Pfh)(x) = E (())X(I,() (3.16)
i=1 I f(f (x)) I

The FP operator for a Markov map follows by substituting (3.10) into (3.16) to obtain

N h(-)Xf,(j,)(x)
(Pfh)(x) = Si (317)

i~~~~~~1 ~~~~~(3.17)

Our goal is to determine invariant density of a Markov map, or phrased differently, to

find a fixed point of (3.17). A fact that is instrumental in finding such a fixed point is that

the invariant densities of a Markov map is constant on each partition element [19]. More

specifically, p(x) is of the form
N

p(X) = Epixi(x),
i=1

where pi > 0 is a constant. It is thus natural to examine the structure of the FP operator

acting on functions that are constant on the partition elements.

We proceed by examining the FP operator acting the indicator functions Xi. Its action

on linear combinations of indicator functions follows from its linearity. Substituting h(x) =

Xj(x) into (3.16) and simplifying yields

PfXj (x) = 1 Xi(x). (3.18)

Thus, the image of the indicator function of a partition element is a sum of indicator func-

tions of partition elements. As a consequence of its linearity and (3.18), the FP operator

maps linear combinations of the indicator functions {X}N to linear combinations of indi-

cator functions.
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In what follows, it is convenient to denote by Po the N dimensional space spanned by

{Xi}N1. Each point in a Po is of the form

N
h(x) = XhXi (x). (3.19)

i=

where hi is a constant. Each point of Po can thus be uniquely represented by the N-tuple

h = [hi ... , hN]T. So for example, the characteristic functions X1 and X2 correspond to the

N-tuples X1 = [1, 0, ... , O]T and X2 = [0, 1, 0, ... , O]T respectively.

By the previous discussion, a Markov map's FP operator maps Po to itself and thus,

when restricted to Po, can be represented by an N x N matrix. We denote this matrix by

PO. W\ith respect to the vectors {Xi}/- 1, the i-th column of the matrix is the coordinate

vector of the image of Xi(x) under P1 as in (3.18). More specifically, the elements of Po are

if i (3.20)
0 otherwise

where s is the slope of the j-th affine segment of f (see (3.10)).

The matrix Po is the basis for an analytic solution for the invariant density of a map f.

An invariant density is a solution to the fixed point equation

Pfp(x) = p(X) (3.21)

Suppose p(x) is piecewise-constant on the partition {I}N l 1. Then (3.21) can be expressed

in terms of P as

Pop =A (3.22)

where p is the coordinate vector of the invariant density p(x). In other words, according to

(3.22), the coordinate vector of an invariant density is the eigenvector of Po corresponding

to the eigenvalue 1.

That such an eigenvector/eigenvalue pair always exists has been shown by Friedman

and Boyarsky [21]. Specifically, they have shown:
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Lemma 1 The matrix Po is diagonally similar to a column stochastic matrix, i.e.

T = D-'P0 D, (3.23)

where, D is diagonal and has positive entries. The matrix T has positive elements and each

of its columns sums to unity.

Similar matrices have the same eigenvalues. It follows that Po has the same eigenvalues

as some stochastic matrix. Frobenius's theorem [22] asserts that all stochastic matrices,

and hence Po, have an eigenvalue equal to unity and further that this is an eigenvalue

of maximum magnitude. Because the elements of P are nonnegative, the eigenvector

corresponding to the eigenvalue 1 has positive components. The invariant density resulting

from this eigenvector is thus nonnegative in accordance with intuition.

Suppose that the solution to the fixed point equation (3.22) is p = [pr,...,PN]T. An

invariant density of f is of the form

N
1

v i il pixi(x) (3.24)

where Iij = a - ai- 1 is the length of the i-th partition element and the leading constant

ensures that the density has an integral equal to one.

Example

Consider again the piecewise-linear Markov map of (3.9) shown in Figure 3-2. When re-

stricted to the two-dimensional space of piecewise-constant functions, the FP operator as-

sociated with f is represented by the 2 x 2 matrix

PO=
p - a a

a1-a
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Figure 3-3: A Comparison of the Analytic and Empirical Density for the Markov Map of
the Example

The eigenvector associated with the eigenvalue 1 is p = [(1 - a), 1 ]T . Referring to (3.24),

the invariant density is the piecewise-constant function

{ < x < a,!, 1 <x<ap(x) = a - -
1_ _g a< x < 1

In Figure 3-3 this density is compared with an empirically estimated density computed via

a histogram of 50000 points generated by the map f with parameter a = 8/9.

3.3.2 Matrix Representations for the FP operator

In light of 'the relationship (3.15) between the FP operator and correlation statistics, a

compact representation of the correlation statistic relies on a compact representation of the

FP operator. By definition, the FP operator is an ifinite dimensional linear operator since

it maps the infinite dimensional space of integrable functions to itself. However, as we have

seen above, when restricted to a space of piecewise-constant functions, a Markov map's FP

operator has representation as a finite dimensional matrix. In this section, we show that

the FP operator may be represented by finite dimensional matrices on larger spaces.

The results of the previous section, which held for the piecewise-constant functions
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(3.19), generalize in a straightforward way to piecewise-polynomial functions of the form

N k

h(x) = E E aijXi X(x). (3.25)
i=1 j=O

It is convenient to introduce the notation

{01, ... ,ON(k+l)}-{X1, ... ,XXN, XX1,.. XXN ... x .,klXN}. (3.26)

so that h(x) can be written in the form

N(k+l)

h(x)= E hiOi(z). (3.27)
i=1

With this notation, each piecewise-polynomial of degree k is uniquely specified by the

N(k + 1)-tuple h = [hi,...,hN(k+l)]T which we refer to as the coordinate vector of h(x).

Keep in mind that the piecewise-polynomial (3.27) depends on the partition elements Ii

(and hence the map f) through the characteristic functions X(x). This dependence will be

mentioned only when the partition is not clear from the context of the discussion.

Proceeding along the same lines as the discussion of Section 3.3.1, we consider first the

FP operator acting on functions of the form h(x) = xkXi(x). Substituting h(x) into (3.17)

yields
N x.bt' kX(fx_:' x

(Pfxkxj)(x) = E )xi()Xf(Ii)() (3.28)

Expression (3.28) simplifies substantially upon taking advantage of f's Markov property.

After some straightforward manipulations we obtain

PfxkXj(x) = (x -jk X(:), (3.29)~j )j I-~j ()

where sj and bj are the parameters of f (see (3.10)). Thus the image of h(x) is a piecewise-

polynomial. By the linearity of the FP operator, it follows that the image of a piecewise-

polynomial of degree k is a piecewise polynomial of degree k.

Denote by Pk the space of piecewise-polynomials of degree k. Because Pk is spanned by
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the linearly independent functions {t i}N=+l), its dimension is N(k + 1). By the previous

discussion, Pf maps the finite dimensional space Pk to itself and hence, its restriction to Pk

can be represented by an N(k + 1) x N(k + 1) matrix. We denote this matrix by Pk. With

respect to the set of functions {9 iiN(k+1), the i-th column of the matrix Pk is the coordinate

vector of the image of i under Pf which is given by (3.29). More specifically, expanding

the first factor on the right hand side of (3.29) using the binomial theorem yields that P is

of the form

Poo
PO 

0
Pk =

0

Pol

P 1

0

... ... Pok

P1 2 ... Pik

.Pk ,

... ... Pkk

(3.30)

where each block of Pk is an N x N matrix of the form

j > i
(3.31)P { P°B-iS

Pij = i

0 otherwise

The matrices B and S are diagonal with elements

0

-b2
B =

0

0

. . .
0o

''' 0

* ° °
. 0

... bp

(3.32)

0 --

and
1 0 ......

O 1 0 ...
S -S-

0 0 . ..

and P is the N x N matrix with elements defined in

In summary, a Markov map's FP operator on the

0

0

1
sp

(3.20).

space Pk

(3.33)

may be represented by the
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N(k + 1) x N(k + 1) dimensional matrix defined by (3.30), (3.32), (3.33) . The matrix is

quite structured and easy to compute directly from the map's parameters.

Since an invariant density is an eigenvector of the FP operator associated with a unity

eigenvalue, the eigenstructure of the matrix Pk also provides some information about the

form of the invariant densities of Markov maps. One consequence of the block triangular

structure of Pk is that its eigenvalues are the eigenvalues of the submatrices Pij = PoSt on

its diagonal. For an expanding map, i.e. one with a slope that is strictly greater than one,

the the elements of the diagonal matrix S are strictly less than one. It follows that the

eigenvalues of Pit, which we denote by {Aij}N 1 satisfy

l~iXl IP ISV

' : P1ll

< 1.

when i > 0 When f is eventually-expanding, a similar argument applied to Pim for suf-

ficiently large m shows that its eigenvalues are strictly less than one in magnitude when

i > 0. It follows that the only piecewise-polynomial invariant densities of a Markov map are

associated with P0, or, phrased differently, that all piecewise-polynomial invariant densities

of a Markov map are piecewise-constant.

Example

In Section 3.4, expressions for the power spectrum of time series generated by Markov maps

will be derived. As a first step in this process, the second order correlation E{x[n]x[n + k]}

must be computed, which in turn requires the FP operator on the space of piecewise-linear

functions. For the map pictured in Figure 3-2 the matrix representation of the FP operator

on P is

0 1-a 0 (1-a)

a a a
3 a

P1 = I 1-a (-a ) -)

0 0 0 -(1-a) 2

° 0 a2 -(1-a)2
(1-)2
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Here the block upper triangular form mentioned above is clear.

3.3.3 Analytical Expressions for Correlation Type Statistics

The matrix representation for the FP operator developed in the previous section is the

central tool needed to determine closed form expressions for the correlation statistics (3.12).

Once the appropriate representation for the FP operator has been determined and the

invariant density has been computed, what remains primarily a matter of notation.

Consider first the integrand of (3.15). When each hi is a piecewise-polynomial, straight-

forward application of the definitions of the previous sections yields that the integrand

h( )(Pr-l-k-2(hr-l(X) ... P;2 (h2(X)P (hl (x)p(x)) ) (334)

has coordinate vector of the form

hr (pkr..(h ® i (3.35)

where P is the matrix representation of the FP operator acting on the space of piecewise-

polynomials of appropriate dimension, and the notation (D denotes multiplication of piecewise-

polynomials. More specifically, if hi and h2 are coordinate vectors of piecewise-polynomials,

the vector product product h3 = hi 0 h2 is defined as the coordinate vector of the product

h3 (x) = h1 (x)h 2 (x).

At first glance, (3.35) appears to be a complex way to express the integrand. However,

it provides a direct computational approach using only straightforward matrix-vector op-

erations. Furthermore, it is often the case that the individual statistics are of less interest

than some transformation of a sequence of statistics. This is the case for instance when we

are interested in the power spectrum of a process generated by a Markov map. In many

situations of this type, (3.35) is more easily manipulated than (3.34).

What remains is to evaluate the integral on the right hand side of (3.15). The integrand

(3.34) can be viewed as a product of two piecewise-polynomials-hr (x) and the parenthe-

sized term on the right side of (3.35). The integral is a bilinear form in these two functions

and can be implemented by a finite dimensional matrix bilinear form since each function is
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an element of a finite dimensional vector space. Thus, the integral itself can be computed in

terms of the coordinate vectors. Specifically, suppose two piecewise-polynomials gl, g92 E Pk

have coordinate vectors g1, 2, then

A g (x)92(x)dx = iTMk92. (3.36)

where

[Mk]ij = jr (x)O(x)dx (3.37)

and ai, Oj are are defined in (3.26). Thus, M is a N(k + 1) x N(k + 1) matrix. Note that

in each row and column there are at most k nonzero entries because the support of only k

of the Oi's coincide and the rest are disjoint. The sparse structure of M may be of use in

computationally efficient implementations of (3.36).

Example: Returning again to the map pictured in Figure 3-2, the matrix M1 is of the

form

a 0 a2 °
2

0 1 - a 0 1-a2
2 

a2 a'30 -0 1 -0
2 3 3o 1- 2 1-3

Given this matrix representation of the integral and the matrix representation of the

FP operator on Pk we can obtain a matrix representation of correlation type statistics as

follows. Let 2 be the parenthesized term of (3.35). Then

Rf;ho ,...,hr [kl, . . ., kr] = hr M 2 (3.38)

where M is the matrix with elements given by (3.37) with the appropriate basis elements.

Equations (3.38) and the relationship expressed in (3.34) and (3.35) together provide

closed form analytical expression for a general class of correlation statistics. This closed

form result not only provides a method to compute the numerical values of correlation

statistics, but also provides some insight into the overall statistical structure of Markov

maps. In the next section we consider one aspect of this structure, namely, the form of the
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power spectra associated with Markov maps.

3.4 Spectra of Markov Maps

In this section, the techniques developed above will be used to find the power spectra

of time series generated by Markov maps. We will see that such time series have rational

spectra with readily computable parameters. This is a rather remarkable property of Markov

maps-the results of Chapter 4 show that more general maps need not have rational spectra.

As in the example of Section 3.1 our approach is to compute the autocorrelation sequence

of a map; its Fourier transform is the desired power spectrum.

The correlation values to be computed are

Rf;x,x[k] = E{xfk(x)}

= A 1 xfk(x)p(x)dx

where p is the invariant density associated with f and mx is the expected value of x. Let

hi (x) = x and h2 (x) = xp(x). Note that because the invariant density of any Markov map

is piecewise-constant (see Section 3.3.1), the product xp(x) is piecewise-linear, as is h1i(x).

It follows that Pi, the matrix representation of the FP operator on P1 , and M1 must be

determined in order to compute the autocorrelation sequence. Using (3.38) and (3.35), the

correlation sequence can be expressed in the form

Rxx[k] = hTMlP Ih2 , (3.39)

where each term in (3.39) may be determined as in the preceding sections.

The power spectrum associated with f is obtained by taking the Fourier transform of

(3.39)

00

Sxx (eJw) = E Rx.[n]e-jwn
n=-oo

oo00

hTM( E Pnle-Jwn)h2 (3.40)
n=-oo
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The only issue that needs to be resolved is whether the infinite sum in (3.40) converges.

Because P1 has at least one eigenvalues of unity magnitude (corresponding to the invariant

density), a complication arises when performing the sum (3.40). Any eigenvalues of P1 with

unit magnitude correspond to impulses in the Fourier transform. In particular, because a

Markov map on the unit interval generates time series with nonzero mean, its spectrum

must have an impulse at zero frequency. These impulsive components may be isolated

however.

The eigenvalues of unit magnitude can be isolated by writing P1 in Jordan form:

P1 = E-1JE

where E is a matrix of generalized eigenvectors. Writing J in the form

j[J1 0J =
0 J2

where J1 consists of Jordan blocks with eigenvalues of unit magnitude and J 2 consist of

Jordan blocks with magnitude strictly less than unity. By lemmas and and the fact that

all eigenvalues of unit magnitude are associated with P (see Section 3.3.2), there are no

other eigenvalues. Now, P can be expressed as

Pi = rl + F2

where F1 and 2 are defined by

F1 = E11 J E,
0 0]

-10 0

F2 = E E
l J2 0
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x[n]

Figure 3-4: A Sample Time Series Generated by the Markov Maps of the Example

It can be readily verified that P = rk + r2 so that the sum (3.40) is of the form

p

S..(elw) = , -M(I- F 2 e)l(I - r)(I- P2eiw)lh2 + Ci6(w - wi) (3.41)
i=1

where Ci and wi depend on F1 and p is no larger than the dimension of the J1. Since the

process generated by f has a nonzero mean, p > and wi = 0 for some i.

Examining (3.41) more closely, we may infer that the spectrum of a Markov map is a

linear combination of a rational function and impulses. The poles of the rational portion

of the spectrum correspond to the eigenvalues of the matrix F2, i.e. the eigenvalues of P

with magnitude less than one. The zeros of $Sxx(ejw) depend on the vectors hl h2 and the

matrix M.

Example

Consider again the Markov map

-ax + a < x < a

la(i - x ) a<x< 1i-1-

with parameter a = 8. A time series generated by iterating f from the initial condition9.

x[0] = 1/3 is shown Figure 3-4.

The matrices MAl and Pl and the invariant density p(x) have been computed in previous
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examples and are evaluated here for the parameter value a = :9'

0

8
P1 =

0

0

1
9

1

0

0

8 0

0 9

32
8 0

0 162162

0

512
9

0

64

32
81

0

512
2187

0

1
9

1
9

1
81

1
81

0

17
162

0

217
2187

9 O<X<8
- -0<x<

8 1 _ < x <l
17 9 - -9

The expected value is m = 217 Using (3.41) we obtain

transform of the correlation sequence is of the form

that the rational part of the z

42632 36z- 1 - 145 + 36z
S(z)= 459 (9 8z)(9+8z-)(64z2 +z+81)(64z-+z 1 +81): 459 (9 +8z)(9 +8z-')(64Z2 + z + 81) (64z-2 + Z-l + 81) -

(3.42)

Both the numerator and denominator polynomials are symmetric in z and z -1 which is

consistent with the fact that any rational power spectrum must have a factorization

Sxx(z) -= S(z)(z-1),

for some rational function S. Thus, a time series generated by the map f has a three pole

spectrum.

The power spectrum Sxx(e jw) is plotted in Figure 3-5 along with an empirical spectrum

computed by periodogram averaging with a window length of 128 on a time series of length

50000. The solid line is the plot of the analytical expression and the dotted line is the

empirically computed spectral estimate. The agreement between the analytical and the

empirical results is good.
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Figure 3-5: Comparison of Analytically Computed Spectrum and Empirical Spectrum
b

We have seen that corresponding to each Markov map is a rational power spectrum. It

is natural to ask whether the converse is true. That is, given an arbitrary rational system

function S that is positive on the unit circle, is there a Markov map with S., as its

power spectrum? This question appears to be difficult to answer. However, the following

discussion may provide some insight into the question itself.

As we have seen, the spectrum of a Markov map depends FP operator, and in particular

its eigenvalues, in a fundamental way. Because the matrix P1 is highly structured, its

eigenvalues may not take on arbitrary values. Specifically, P is block upper triangular

and each of its diagonal blocks is a product of the matrix Po with a diagonal matrix. As

discussed above P0 is similar to a stochastic matrix. It follows that some insight into the

poles of the spectrum can be gained by looking at eigenvalue structure of stochastic matrices.

Indeed, it is known that there need not exist a stochastic matrix with an arbitrary set of

eigenvalues (see [22]). Moreover, the set of possible eigenvalues of a stochastic matrix is

highly constrained. As a consequence, Markov maps with arbitrary rational spectra need

not exist. While these remarks do not answer the question posed above, they do point out

the fundamental difficulties in finding such an answer.
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Chapter 4

Maps of the Interval: NonMarkov

Maps

The Markov maps introduced in Chapter 3 have several properties made them worthy of fur-

ther study. Perhaps as important as their analytic tractability and easily described statisti-

cal structure is their ability to serve as useful models for much larger class of systems. In par-

ticular, in this chapter, we show that a much larger class of maps-the eventually-expanding

maps-can be analyzed indirectly by applying the techniques developed for Markov maps.

Indeed, every map in this larger class can be approximated arbitrarily well by a Markov

map. Of course, in order to make the previous statement meaningful eventually-expanding

maps must be defined and the sense of approximation must be described more precisely.

This chapter addresses these two issues.

The relationship between eventually-expanding maps and Markov maps has other im-

plications. For instance, we will show that the power spectra of eventually-expanding maps

are similar to those of Markov maps. More broadly, the goal of this chapter is to determine

the structure of correlation statistics of the form

Rf;ho,h ....h [kl, ,kr] = Jo ho(x)hl (fk (x)) . .. hr(fkr (X))p(x)dx (4.1)

for the larger class of eventually-expanding maps.
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4.1 Eventually-Expanding Maps

Many examples of maps occurring in practice are neither Markov nor piecewise linear [10,

23, 24]. In this section, we define a broader class of maps, called eventually-expanding maps,

that retains some of the analytic tractability of Markov maps. Unlike the Markov maps

considered in the previous chapter, we will not be able to determine closed form expressions

for the statistics of eventually-expanding maps. However, we will be able to approximate

them as closely as desired.

With little loss in generality, we will consider only maps on the unit interval. This

restriction is not as stringent as it may appear, since if a time series is generated by x[n] =

g(x[n - 1]) with g a map on an interval [a, b], the time series z[n] = x[n]/(b - a) - a satisfies

Zn b _(g((b - a)Zn-l + a) -a)=af(znl),

and f is a map on the unit interval. Of course, x[n] can be recovered from z[n] and so the

properties of xn can be inferred from those of zn.

Eventually-expanding maps possess two of the properties of the Markov maps we studied

in Chapter 3, namely, the eventually-expanding property and piecewise continuity. Their

precise definition is as follows:

Definition 2 A nonsingular map f: [0, 1] -+ [0, 1] is called eventually-expanding if

1. There exists a partition 0 = a < a < ... aN = 1 of the unit interval such that for

each i the restriction of f to the open interval Ii = (ai-1, ai) is monotonic, continuous

and differentiable.

2. The function 1 is a function of bounded variation.

3. There is a number A > 1 and an integer m such that Id fm(x)I > A wherever the

derivative exists.

The bounded variation condition in the definition is essentially a smoothness requirement

on the derivative of the map. Among the maps that satisfy this condition are Markov maps,

maps with bounded slope, and certain maps with a finite number of points of infinite slope.
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Figure 4-1: The Graph of an Eventually-Expanding Map

An eventually-expanding map can be expressed in the form

N

f (z) = i (z)Xi (x), (4.2)
i=1

where each fi is monotonic and continuous on the interval Ii and Xi is the indicator function

of the i-th interval. An example of an eventually-expanding map is shown in Figure 4-1.

Note in particular, that an eventually-expanding map need not be continuous. Eventually-

expanding maps differ from Markov maps in that they need neither be piecewise linear nor

map partition points to partition points.

The broad statistical properties of eventually-expanding maps have been well studied

[25]. For example, existing results establish conditions for ergodicity and the applicability

of central limit theorems. Less attention has been paid to statistics of time series gener-

ated by these maps. In this chapter we will extend some of the results of Chapter 3 to

eventually-expanding maps. As an intermediate step, the next section presents some previ-

ously reported results establishing the existence of invariant densities and the form of the

FP operator for eventually-expanding maps.

4.1.1 FP operator and Invariant Densities for Eventually-Expanding Maps

As was the case for Markov maps, the Frobenius-Perron operator plays a central role in

understanding the statistical properties of time series generated by eventually-expanding
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maps. The FP operator associated with an eventually-expanding map can be derived in the

same manner as for a Markov map. In fact, the expression (3.16) for the FP operator of a

one-dimensional map is sufficiently general to include all eventually-expanding maps. It is

repeated here for convenience:

N h(fi-I(x))Xf(,)(x)
(Pfh)(x) = E ( (x))

i=1 If, (fi-1(x))I

As for all nonsingular maps, the invariant density of an eventually-expanding map is a

fixed point of the FP operator; a map has an invariant density only when the fixed point

exists. In Section 3.3.1, we reasoned that, for Markov maps, such a fixed point exists

because of properties of a matrix representation of the FP operator. For more general

eventually-expanding maps, the existence of a fixed point and an invariant density must

be verified by other means since, in general, there is no matrix representation of the FP

operator. The following theorem due to Wong [26] ensures that an eventually-expanding

map has an invariant density:

Theorem 4 Let f : [0,1] -+ [0, 1] be an eventually-expanding map. Then there exists a

density p of bounded variation such that Pfp = p, i.e. p is an invariant density. If f has

N partition points, then f has at most N such densities.

Once the existence of an invariant density has been established, the integral on the right

side of 4.1 (and hence any correlation statistic we seek) is well defined.

Theorem 4 does not rule out the possibility that more than one absolutely continuous

invariant density exists. Certain auxiliary conditions on f guarantee the uniqueness of

the invariant density. For example, it can be shown (see [26]) that any map with two

partition elements has a unique invariant density. More generally, when f has multiple

invariant densities, each is supported on disjoint subsets of the unit interval consisting of

finite unions of intervals. When restricted to one of these subsets, f is an ergodic map,

i.e., it has a unique invariant density. In this manner, an eventually-expanding map may

be decomposed into a finite number ergodic components. Using this decomposition, maps

with multiple invariant densities are studied by examining each ergodic component'. For

1See, for example, [25] for a more detailed treatment of these issues.
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this reason, we will restrict attention to ergodic maps.

Now that eventually-expanding maps have been defined, and some of their properties

described, we turn to the problem of approximating their statistics.

4.2 Approximate Statistics for Eventually-Expanding Maps

The statistics of a general eventually-expanding map, unlike those of a Markov map, seem

to have no simple closed form expressions. Nevertheless, eventually-expanding maps can

be analyzed approximately using techniques based on Markov maps. In particular, any

eventually-expanding map, along with its correlation statistics, can be approximated to any

desired accuracy by a Markov map. Furthermore, the statistics of the approximating Markov

map may be computed using the results of Chapter 3. In this manner, the approximate

value of statistics of an eventually-expanding map may be determined in closed form.

In this section, we use a particular method of approximating eventually-expanding maps

by Markov maps. Although this approximation technique has been previously reported

[27], its application to the problem of computing correlation statistics is new. The next

subsection presents a description of the approximation method. Subsection 4.2.2 shows

how the Markov approximation can be used to compute approximate correlation statistics

of an eventually-expanding map.

4.2.1 Markov Approximations to Eventually-Expanding Maps

This section presents a sequence of piecewise linear Markov maps that approximates an

arbitrary eventually-expanding map. These Markov approximations form the basis of a

technique approximating the statistics of eventually-expanding maps. As a preliminary

step, we consider the special case of approximating eventually-expanding Markov maps

that are not piecewise linear. This special case provides some insight into the general case.

Suppose f is Markov map that is not piecewise linear. Then, as discussed in Chapter 3,

f takes partition points to partition points. That is, there exists a set of partition points

Q = {ai}i=o0 such that f is monotone on the interval (ai-1 ,ai) and f(Q) c Q. Suppose we

denote by fo the piecewise linear approximation of f with respect to Q. More precisely, fo
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Figure 4-2: A Markov Map and its First Piecewise Linear Approximation

is defined at partition points by

fo(a-) = f(a-)

fo(a+ ) = f(a+),

where we define the left and right limiting values since f may be discontinuous. Between

partition points , fo is defined by linear interpolation, i.e.

() = x - ai-1 f(a -) + ai -x f(a+ l). (4.3)
ai - ai-1 ai -ai-l

By definition, the map fo satisfies fo(Q) c Q and is thus a piecewise linear Markov map.

It can be shown (using for example the mean value theorem) that f is also eventually-

expanding and hence has a smooth invariant density. An example of a Markov map and its

piecewise linear approximation are shown in Figure 4-2.

The map fo is one member of a family of piecewise linear Markov maps that approxi-

mates f. The family can be determined as follows. Note that if f is a Markov map with

respect to the partition points Q, it is also a Markov map with respect to the partition points

Q1-Q U f (Q) since f(Q 1) = f(Q) UQ C Q C Qi. We denote by f, the piecewise linear

approximation of f with respect to Q1. Then fi is a piecewise linear Markov map with

respect to Q1 as well. More generally, we define the partition points Qi = Qi-1 Uf - 1 (Qi-1).
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We denote by fi the piecewise linear version of f with respect to the partition points Qi.

For each i, the map fi is a piecewise linear Markov map. This sequence of piecewise linear

maps provides an increasingly good approximation to f as i gets large. In fact, using the

eventually-expanding property of f, it can be shown [25] that fi converges to uniformly to

f. For the Markov map of Figure 4-2, two subsequent steps of this process are shown in

Figure 4-3.

We will show in the next section that not only does the map converge, but, more

importantly, the statistics of fi approach those of f for sufficiently large i. We now generalize

this approach to all eventually-expanding maps.

The approximation technique described above, which applies to Markov maps that are

not piecewise linear, had two steps. First, a sequence of increasingly fine sets of partition

points was defined. Then, a piecewise linear Markov map was defined using each set of

partition points. These two steps can be generalized to arbitrary eventually-expanding

maps as follows. First, suppose f is an eventually-expanding map with partition points

Q. As above, we define the sequence of sets of partition points Qi = Qi- U f- '(Qi-l).

Since f need not be Markov, defining the piecewise linear approximations with respect to

Qi requires some care to assure both the eventually-expanding and Markov properties. As

above, we define the approximating map at the partition points linearly interpolate. One

approach is the following:

1. For each partition point q E Q such that f is increasing at q+, set fi(q+) equal to the

maximum element of Qi that is no greater than f(q+), i.e.

fi(q+ ) = max{v e Qijv < f(q+)}-.

2. For each partition point q E Q such that f is decreasing at q+, set fk(q+) equal to

the minimum element of Qi that is no less than f(q+), i.e.

fk(q + ) = min{v Qilv > f(q+)}.

3. For each partition point q e Q such that f is increasing at q-, set fk(q-) equal to the
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minimum element of Qi that is no less than f(q-), i.e.

fk(q-) = min{v e Qlv >_ f(q-)}.

4. For each partition point q Q such that f is decreasing at q-, set fk(q-) equal to

the maximum element of Qi that is no greater than f(q-), i.e.

fk(q-) = max{v E Qilv < f(q-)}.

The map fi is defined at all other points by linear interpolation in the same manner

as in (4.3). By construction, the function fi satisfies f(Qi) Qi and is thus not only

piecewise linear but also Markov. It has also been constructed to be eventually-expanding

and piecewise linear. A few steps in this process applied to a simple non-Markov map are

shown in Figure 4-4. Although other sequences of Markov approximations may potentially

be applicable in the current context, the method described above will be used exclusively.

We therefore refer to the sequence fi as the sequence of Markov approximations to f with

no possibility of ambiguity. That the sequence of approximations has the desired properties

is verified in the next section.

4.2.2 Properties of Markov Approximations

In this section, we show that the sequence of Markov approximations can be used to ap-

proximate the correlation statistics of an eventually-expanding map. Previously reported

results show that the sequence of Markov approximations to a map f converges uniformly

to f [27]. However, uniform convergence is not sufficient to guarantee that the statistics of

the Markov approximations converge to the statistics of f. The main result of this section

is that correlation statistics of the approximate maps do indeed converge to the appropriate

statistics of f. This result represents a substantial generalization of previously reported

results, which considered only simple statistics of the form E(h(x)) (see e.g. [28]).

A sequence of Markov approximations to an eventually-expanding map generates a

sequence of invariant densities that in turn dictates the manner in which the statistics
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of the approximations converge. In this context, the notion of weak convergence [15] is

particularly useful. More specifically, a sequence of functions Pi E L1 converges weakly to

p E L if

.lim A h(x)pi(x)dx-f=o h(x)p(x)dx (4.4)

for all bounded measurable functions h. Weak convergence has an interpretation in terms

of statistics of the form E(h(x)). In particular, by construction, each fi is eventually-

expanding and hence has an invariant density Pi. It follows that the following sequence of

statistics is well defined:

Ei{h(x)} = X0 h(x)pi(x)dx,

where h(x) E L1. For fi to be a useful approximation to f, we require that

lim Ei{h(x)} = A h(x)p(x)dx
l<OO [0~~~~~~~,1]

== Eh() } .

for every h E L1. Phrased differently, the sequence of invariant densities of fi must converge

weakly to the invariant density of f.

According to the following theorem due to Gora [27], the sequence of invariant densities

associated with a sequence of Markov approximations converges weakly.

Theorem 5 Suppose f is an eventually-expanding map with invariant density p, and fi is

the sequence of Markov approximation to f. If fi has invariant density Pi, then fi - f

uniformly and Pi -+ p weakly.

In light of the previous discussion, this theorem may be interpreted as an approximation

result. Namely, fi approximates the statistical properties of f to the extent that expected

values computed with respect to the invariant densities of fi converge to expected values

with respect to the invariant density of f.

Theorem 5 guarantees that E{h(x)} can be well approximated by Ei{h(x)} for suffi-

ciently large i. This fact suggests a a three step method for approximating statistics of

the form E{h(x)} for eventually-expanding maps. First, choose i sufficiently large so that

the Markov approximation fi provides a good approximation to f. Next, use the tech-
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niques of Chapter 3 to determine the invariant density Pi. Finally, compute the integral

Ei{h(x)} = f[0,i] h(x)pi(x)dx. This procedure is straightforward to apply and requires only

that the invariant density of fi be determined. It has been applied to the problem of

approximating the Lyapunov exponent of a one-dimensional map [28].

We will show in the sequel that the approximation technique outlined above can be

applied to compute correlation statistics. In particular, we will verify that correlation

statistics of the sequence of approximations satisfy

lim Rj,ho,...hL[kl,...,kr] = Rf,ho, [kl...,h[ , kr],
/+00

or, in more detail,

lim A1 ho(x)hl(fik'(x)) hr(fikr(x))pi(x)dx =
+00 [0,1]

J01 ho(xZ)h (fkl (x)) . .. hr(fkr (x))p(x)dx. (4.5)

Comparing (4.5) and (4.4) we see that weak convergence of pi does not immediately guar-

antee the convergence of the quantities (4.5)-both the invariant density and the remainder

of the integrand of (4.5) depend on the index i. In order to verify that correlation statistics

converge to the correct values, we introduce a stronger notion of convergence.

We define statistical convergence to occur when a sequence of maps and its correlation

statistics converge to the desired values.

Definition 3 Suppose an eventually-expanding map f has a unique invariant density p. A

sequence of maps {fi} statistically converges to f if each fi has a unique invariant density

Pi and

Rf.,h . . ...h , krl fl4 00' RJh 0.[... [k kr]

for any continuous hi and all nonnegative integers ki and r.

Note that statistical convergence depends directly on both the sequence of maps fi and the

sequence of invariant densities.

The following theorem, which is proved in Appendix A, asserts that the sequence of

Markov approximations to an eventually-expanding map statistically converges.
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Theorem 6 Suppose f is an eventually-expanding map. Then sequence of piecewise linear

Markov approximations statistically converges to f.

Theorem 6 implies that the three step approach described above may be used to approximate

the correlation statistics of any eventually-expanding map.

Theorem 6 states that an eventually-expanding map is the limit of a sequence of Markov

maps in a very specific sense. We will see in the next section that an alternative interpre-

tation of the theorem is that the FP operator of a eventually-expanding map is the limit of

a sequence sequence of FP operators associated with the Markov approximations. We now

explore this interpretation and some of its consequences.

4.3 Power Spectra of Eventually-Expanding Maps

In this section, we consider some properties of the FP operator and the insight it provides

into the broad structure of statistics of eventually-expanding maps. For concreteness, we

concentrate on the autocorrelation sequence and power spectra associated with these maps.

We begin by presenting a concrete example illustrating how the techniques of the previous

section can be used to approximate the power spectrum of a non-Markov map.

Consider the map

(12X + 1)½ X < (
f (x)={ [I~::-~~;. 1(4.6)

f (2(1-x))½ x >

with graph as in Figure 4-5 (a). We shall approximate this map by f3, the third in the

sequence of Markov approximations to f. By directly applying the method described above,

the approximate map is determined to be of the form shown in Table 4.1 The graph of f(x)

is shown in Figure 4-5 (b).

Once an approximating map is chosen, the techniques of Chapter 3 may be used to

determine a closed form expression for the power spectrum. The analytical power spec-

trum computed from the approximate map is shown in Figure 4-6 along with an empirically

determined power spectrum computed from a 50000 sample time series by periodogram

averaging with a length 256 window. It is evident that the agreement between analytical

and empirical spectra is good. There are, however, no results available to bound the ap-
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(a) The Map of Equation (4.6)

(b) The Third Piecewise Linear Markov Ap-
proximation of Equation (4.6)

Figure 4-5: An Example of Approximating an Eventually-Expanding Map with a Piecewise-
linear Markov Map
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f 3 (x) Range
~~~~~~~~~~~~~~~~~~~~~~~~...35X+ 93 0< x <

..... 156 1 9101
l- X + 92"- 1 << - 65536

1536 _ 4895 9101 < 93
1-- x + 106 < X -- 56

6144-- + 295 93 5219l
67-13X+ 53704 2 < X < 1048576
2048X_+136 ' 521901 < X < 1
2387 ' 2387 1048576 -

1024 ',r 1535 1 < 263167
l1023 ' 1023 2 < -- 524288
- 1024t '--rt76H3- 263167 , 7959_X94 11769 2

- g59 X7 t7672 524288 <S - -
256 + 2601 79 < < 26527
_ 91 + T5 28 128 - 32768
256 + 591 26527 < 7 < 

4-3X 2fi '- 27f - 13I
-,14..7 7 < X 122423

512X + 8285 122423 < <1
10 2 1744 13172 - 512

-32x + 32 5 < < 1

Table 4.1: The Definition of the Third Markov Approximation to the Map of Equation (4.6)

Figure 4-6: A Comparison of the Analytically Computed Spectrum of the Map of Figure
4-5 (b) and an the Empirically Spectrum of the Map of Figure 4-5 (a)
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proximation error. Thus, choosing the order of the approximation becomes a matter of trial

and error. More work is necessary in order to address this clearly important issue.

The results of the previous section guarantee that any eventually-expanding map is the

statistical limit of a sequence of Markov maps; an eventually-expanding map's statistics

are thus close to the statistics of a Markov map. It follows that the approach used in the

previous example may be applied to compute any correlation statistic of an eventually-

expanding map. Beyond its practical use in computing numerical values of statistics, this

approximation result also illuminates some of the more general statistical characteristics of

eventually-expanding maps. In particular, the approximation procedure outlined in Section

4.2.1 may be viewed as a method of approximating the FP operator of an eventually-

expanding map f by that of a Markov map; once a Markov approximation is chosen its

FP operator is used to compute the statistics of f. Given the close relationship of the FP

operators of eventually-expanding maps and Markov maps, it should not be surprising that

their statistical properties are similar.

The structural and computation results presented above hold for the entire class of

eventually-expanding maps. We have not shown how eventually-expanding maps may arise

in engineering practice. The next chapter presents a map that models the sampled inductor

current in a switching power supply and shows how this model can be used to compute the

statistics of the continuous inductor current.

72



Chapter 5

Chaos in a Switching Power

Converter

The previous chapters have presented techniques with which to analyze a large class of

one-dimensional systems. In this chapter we present an example of an engineering system

that is well described by such a chaotic system. In particular, we analyze the operation

of an idealized model of a switching DC-DC power converter shown in Figure 5-1. We

shall see that in certain of its regimes of operation, the converter is quite well described

by an eventually expanding one-dimensional map of the type analyzed in Chapter 4. Once

this dynamical model is established, the techniques previously described may be used to

determine its statistical properties. Using this approach, certain time-average properties of

the converter may be determined.

Despite the variety of types of switching power converter implementations, e.g., direct

and indirect converter topologies operating in continuous or discontinuous conduction mode,

the same basic approach has typically been applied to modeling them (see e.g. [32, 23]

and the references therein). In particular, because the power converters of interest are

periodically switched systems, they give rise to different models corresponding to each state

of the switch. By incorporating knowledge of the switching strategy, an overall solution can

be constructed. We shall use a similar approach, however, our results differ in two ways from

those previously reported. In particular, unlike the results of Tse [32], which apply only
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Figure 5-1: The Circuit Model of a Buck/Boost Switching Power Converter

to converters operating in discontinuous conduction mode that can be exactly described

by a one-dimensional model, we will consider simple converters operating in continuous

conduction mode, which are inherently two-dimensional systems. Furthermore, our model

describes the evolution of the sampled inductor current and sampled capacitor voltage

from one switching time to the next, in synchrony with the underlying switching clock . In

distinction to the model proposed by Deane [23], which models an asynchronous current and

voltage evolution, our synchronous model allows a straightforward analysis of the statistics

of the converter waveforms.

The chapter is organized as follows. Section 5.1 derives a map that describes the cycle-

to-cycle operation of the converter under current-mode, control with no approximations

aside from the assumption of ideal circuit elements. This model has two state variables, as

might be expected since the circuit has two energy storing elements. However, under the

reasonable assumption of small output voltage ripple, the converter can be well described

by a one-dimensional model. Section 5.2 presents this simplified model and describes some

of its properties. Finally, Section 5.3 presents an analysis of the converter.

5.1 Derivation of the Map

We shall analyze the buck/boost converter of Figure 5-1. The circuit is assumed to operate

in continuous conduction mode, that is, the inductor current i is always strictly positive.
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Figure 5-2: An Equivalent Buck/Boost Converter with and Idealized Switch

Furthermore, the transistor and diode are assumed to operate as ideal switches, in other

words, i.e., they are either fully conducting (on) or fully non-conducting (off). With these

assumptions, the transistor and diode act as single-pole double-throw switch in that only

one of the transistor/diode pair will conduct at any time. A circuit with an explicitly

represented switch is shown in Figure 5-2.

With the switch in position 1, the inductor current increases linearly and the load current

equals the negative capacitor current. With the switch in position 2, the load current is the

sum of the inductor and capacitor currents. The load current can be regulated by controlling

the switching between position 1 and position 2. Thus, the converter's operation depends

on both the topology of the circuit and switching strategy employed. The model developed

below describes the behavior of a converter operating under current-mode control. Using

this control strategy, the switch is thrown into position 1 periodically with period T. The

switch is put into position 2 only when the inductor current reaches a peak value, which we

denote Ip. The switch is thrown back into position 1 when the next switching time arrives.

Thus, the peak inductor current, Ip, is the control parameter.

We will see below that when the converter operates under current-mode control, its

voltage and current waveforms need not be periodic. In fact, the switch may stay in position

1 through multiple periods while, it can remain in position 2 for at most one period. This is

in contrast to typical duty ratio control schemes (see, e.g., [33]) in which the switch assumes

each position during every cycle.
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With the switch fixed in either position, the resulting circuit is linear and time invariant,

and can be analyzed using standard techniques from circuit theory. The details of the

switching strategy dictate how these two solutions are pieced together into a complete

model of the converter. We begin by solving the circuit for each switch position.

With the switch is in position 1, that is, with the transistor fully conducting, the model

behaves like two uncoupled first order circuits described by the equations

[ ' j [ RC ] ~~~~~~~~(5.1)

The solutions of these two equations are

vc(0)- +( i~t 1 (i(O) v;L (5.2)v (t) J v(O)e-RC

When the switch is in position 2, that is when the diode is conducting, the model behaves

like an undriven RLC circuit governed by the state equations

d = [ 0 1 
dt V,1 1 ,

[]A
Vc

The solution to these state equations is

[ i(t) 1 =eAt [ i(O) 1 (5.3)

v (t) L (0)

For convenience, we will model the evolution of the inductor current and capacitor

voltage sampled at consecutive switching times. As we will see, the continuous voltage and

current waveforms can be recovered from these sampled waveforms.

We first consider how the inductor current evolves from time nT to time (n+ 1)T. When

the inductor current at the beginning of the switching interval satisfies i(nT) < Ip - VT,theindcto curet a th beinnngof he withig iteral atifis inT)< I - L'
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the current i(t) does not reach the peak value during the interval nT t (n + 1)T.

The transistor therefore conducts throughout the period and, according to (5.2), the state

variables at times t = (n + 1)T and t = nT are related by

i((n + 1)T) i(nT) + L^T

[ 1((n+l)T) (nT)+ - T

On the other hand, if i(nT) Ip- v-T the inductor current will reach its peak valueL

sometime in the interval nT < t (n + 1)T, at which time the transistor will cut off.

Referring again to Equation (5.2), the peak current is reached at time t = nT + L (Ip -

i(nT)). At this time, the inductor current has value Ip and the capacitor voltage has value

t'-nT
vC(t') = v(nT)e RC

At time t' the transistor switches off and the circuit is governed by (5.3). Thus, at time

t = (n + 1)T the state variables have values

i((n + 1)T) pA((n+l)T-t') P

v ((n + 1)T) | = A(nTet, )e-

By substituting the expression for t', the state variables at any switching time can be

expressed in terms of their values at the previous switching time. In particular, the state

variables evolve according to

i(nT) + 1)T

i((n + 1)T) 1 v(nT)e RC

((n + 1) T) j eA(T- L (Ip-i(nT))) Ip

t vc(nr)e~cf v (Ip-i(nT)))

i(nT) < I- rT

i(nT) > Ip--T

(5.4)

The sampled-data state equations (5.4) are nonlinear. As such, their behavior is difficult

to determine directly from their form. However, computer simulations of (5.4) for different

values of the circuit parameters suggest that sampled waveforms in the converter may
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Figure 5-3: Bifurcation Diagram of the Two-Dimensional Model as Computed by Sweeping
the Peak Current

display three types of steady state behavior: constant, periodic, or aperiodic.

When the sampled-data state variables are constant or periodic, the continuous state

variable are periodic. Traditionally, switching power converters have been designed to

operate in this periodic regime. As a consequence, the analysis and design techniques

developed for these converters are typically applicable only in a periodic regime of operation

[33].

The bifurcation diagram of Figure 5-3 shows all three types of behavior. For all of the

simulations used to construct the figure, the circuit parameters in the model were fixed at

Vs = 1V, T = 100/as, L = lmH, C = 100pF, and R = 20Q. The diagram was generated

by sweeping the peak current from Ip = 0.5A to Ip = 3.5A in increments of .01A. For each

value of Ip the model (5.4) was iterated through 1000 switching periods and the final 100

values of the inductor current were plotted on the vertical axis. By discarding the initial 900
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Figure 5-4: Sampled Capacitor Voltage Computed From Equation (5.4)

points, transient behavior was ignored. We can see for instance that the sampled current

settles into a fixed point for Ip less than about 1.25A. The sampled current is periodic with

period 2 for Ip in the range of about 1.3A to 1.5A. As the peak current increases, we see

behavior that appears to be chaotic.

An example of the sampled capacitor voltage is shown in Figure 5-4 for the same circuit

parameters as above and a peak inductor current of Ip = 3.5A. Although the sampled output

voltage does not appear to be periodic, it does have a manageable ripple. This suggests

the possibility that these power converters may be practically operated in a chaotic regime.

In fact, the broadened power spectrum of the waveforms in the converter may have certain

benefits.

Figure 5-5 shows the relation between consecutive values of the sampled inductor cur-

rent for the same circuit setup as above. Again, the peak current Ip is set to 3.5A and

the data were generated by iterating (5.4). It is evident that there is a strong relation
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Figure 5-5: Relation Between Consecutive Samples of the Sampled Inductor Current
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between consecutive samples of the current that would appear to be well modeled by a

one-dimensional map. In the next section, we determine the form of a one-dimensional map

that approximates Figure 5-5.

5.2 The One-Dimensional Model

Consider the operation of the converter when the transistor is not conducting. When the

output voltage ripple is small, the capacitor voltage vc(t) is nearly constant, say vt. In our

specific situation, such an approximation could be expected to hold when TC and are

small.

Reexamining (5.4) under the assumption that Tc is negligible and that T is small, we

make the following approximations:

eA(T vS (Ii(nT))) I+ A(T - -(Ip - i(nT)))

((Ip-i(nT) )¢~~~ i1

T
eRC 1

With these approximations, the component of Equation (5.4) describing the evolution

of the inductor current reads:

i(nT) + '-T i(nT) < I, - T5i((n + 1)T) L L ~~~~~~~~~~~~~(5.5)
Ip - (T- (Ip) - i(nT) i(nT) > Ip - T

Intuitively speaking, Equation (5.5) reflects the fact that with the transistor conducting,

the inductor current increases linearly from its initial value with slope v-. When the peak

current is attained during a switching period, it occurs at time t', subsequent to which the

inductor current decreases linearly with slope L until the next switching time, which occurs

T- VL (Ip- i(nT)) seconds after the peak current is achieved.
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It is convenient to isolate some of the important quantities associated with the operation

of the circuit through the following definitions:

* The maximum inductor current increase per period when the transistor is conducting

is defined as ml = -

· ~~~~~~~~~~~~~~* The maximum current decrease per period is defined as m 2 = .

* The ratio of increase to decrease is defined = mi.

* The scaled peak current is defined - L.

It is also convenient for what follows to rewrite the dynamics for the scaled inductor current

Yn i(nT). Substituting the variables defined above into Equation (5.5) yields that the

scaled inductor current evolves according to

Yn+l = f(Yn), (5.6)

where f is of the form

f(Y)= /- + Yy 3 (5.7)
a1 - + y) y> 3 -l

The graph of the function f(y) is shown in Figure 5-6. Its maximum value at occurs

at y = - where f(/3 - 1) = 3. According to this model, the sampled inductor current

may become negative for certain combinations of a and /3. Recall however that the model

was derived assuming that the converter operates in continuous conduction mode, i.e., that

the inductor current is always positive. The model may be restricted to parameter values

such that positive inductor currents will always map to positive currents as follows. From

the graph of Figure 5-6 it can be seen that a positive value of the current may map to a

negative value only when f(3) < 0. Since f(/3) = /3 - , we may eliminate the possibility

of negative currents by considering only parameter satisfying /3 > .

The map f has a fixed point at y = _ (/3- 1) The slope of f at this fixed point is

i--- and thus the fixed point is stable when < 1. Referring back to the definition of
dx -- a~
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Figure 5-6: A Graph of the Scaled Inductor Current Map (5.7) for > 

a, this condition may be interpreted as saying that the inductor current may converge to a

stable fixed point when the maximum inductor current decrease during a switching period

is greater than the maximum inductor current increase during a switching period. When

> 1, the fixed point is unstable. We will see below that in this case the sampled inductor

current may be chaotic.

Recall that the model f is valid only for parameter values satisfying > . Under this

condition, the map of Figure 5-6 has several features that make its steady state behavior

more transparent. First, any initial condition in the interval I = [, - ,] stays in 

under iteration of f. Second, any initial condition in the interval 2 = [0, /- -) eventually

leaves 2 since all values of y E 2 map to f(y) = y + 1. Finally, initial conditions in the

interval 13 = (/3, 3(a + 1) - 1] leave I3 in one step and enter 2. These three features of

the map together imply that for all positive initial inductor current values, the sampled

inductor current eventually ends up taking values only in the interval I1 after a sufficiently

large number of iterations of f. Thus, positive initial conditions outside of I1 may start out
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Figure 5-7: Graph of Modified Inductor Current Dynamics (5.10)

with some transient behavior, but the only interesting steady state behavior occurs in the

interval I. We are only be interested in steady state behavior and so will concentrate on f

restricted to the interval I.

In order to isolate the behavior of the map on I, we consider the scaled and shifted

variable

Z1n (5.8)
ot

Substituting (5.8) into (5.6) and (5.7), the dynamics governing the evolution of z are found

to be

Zn+ = g(zn), (5.9)

where g is of the form

z+Q z< 1-&
g(z)= 1 -z ._ 1 c'(5.10)

t t1Z) z > a

The graph of g is shown in Figure 5-7. Comparing Figure 5-7 with the scatter diagram of

sampled inductor currents of Figure 5-5, a strong qualitative similarity can be seen. Both

plots can be brought into close quantitative agreement by accounting for the scale factor

and translation inherent in the definition of z.

In particular, the unscaled sampled inductor current i(nT) can be determined from zn
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by reversing the previously described transformations. Specifically,

i(nT) = Ip -m 2 + m 2zn.

It follows that properties of the sampled inductor current may be determined from those of

of zn, and g, since i(nT) is simply a scaled and shifted version of Zn.

The bifurcation diagram shown in Figure 5-8 gives an indication of the range of behavior

displayed by the one-dimensional model of (5.9) and (5.10) as the value of is varied in

the range 0.8 < < 3. By comparing Figure 5-8 with the bifurcation diagram of the

more complex model of Figure 5-3, we can get a sense of how well the one-state-variable

map mimics the behavior of the two-state-variable model. Although the diagrams plot

differently scaled variables, their qualitative properties are similar. Namely, for small values

of the bifurcation parameter, fixed point behavior is displayed by both models. For large

parameter values, the behavior appears to be chaotic, and both models appear to take all

values in a certain interval. The primary qualitative difference between the two diagrams

occurs in the transition from fixed point behavior to chaotic behavior. In the case of the

more accurate two-state-variable model, we see a period doubling before chaos develops. The

one-state-variable model transitions directly from fixed point behavior to chaos. Since the

primary interest of this section is chaotic behavior in the power converter, this discrepancy

may not be of great significance.

5.3 Some Properties of the One-State-Variable Model

The derivative of the map g of (5.10) has one discontinuity at z =/ - 1. The slope takes

on only two different values: it is either 1 or c. When - > 1, the map is eventually

expanding and the theory of eventually expanding maps can be applied to the analysis of

its properties. In the context of a specific map, namely g, the general and abstract results

of the theory may be given physical interpretations. We shall see in this section that the

map g has no stable periodic orbits and that it is ergodic and relate these properties to the

operation of the power converter. We shall also see that when the parameter takes the value

= , the map g is a piecewise linear Markov map and its operation has a straightforward
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interpretation.

Intuitively speaking, eventually expanding maps have no stable periodic orbits because

of sensitive dependence on initial conditions; points near periodic point generate orbits that

diverge from periodicity. More precisely, consider a periodic point z with period p. This

means that p is the smallest positive integer such that gP(z) = z. If z is a stable periodic

point then the magnitude of the derivative of the single period map must be strictly less

than one, i.e. dgP (u)I,-z[ < 1. However, since g is eventually expanding there is an

integer m such that 1d-~g-(u)[u=z[ > 1. If we choose some iterate of the period p map such
du~~~~~ k

that kp > m, stability would imply that Id kP(u)lu=zl < 1 while the eventually expanding

property requires that IdgkP(u)lu=z > 1. Thus, stable periodic orbits are incompatible

with the eventually expanding property.

Because the converter is a nonlinear circuit, there is no a priori reason to believe that

its qualitative behavior should be independent of the initial current in the inductor, or

insensitive to small inductor current perturbations caused by external-influences. However,

to the extent that the one-state-variable model is an accurate model of the operation of the

converter, a converter designed to operate in a chaotic regime may not slip into periodic

behavior.

The previous argument does not rule out the possibility that the same circuit may

display qualitatively different types of chaotic behavior, depending on its initial state. The

scenario in which the same circuit operates in several different regimes may be inconvenient

in practical applications. It turns out that when g is eventually expanding, it can have

only one regime of operation. More specifically, Theorem 4 cited above guarantees that g

is ergodic in the sense that it has only one absolutely continuous invariant density. This

implies that almost all initial conditions lead to behavior that is qualitatively the same. In

particular, the average properties of the sampled inductor current in the steady state are

independent of initial condition.

When a = 2, the map g is of the form

(z O < z < 0 <(5.11)

2(1-z) 2 < z < {~~~~ 
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and is a member of the family of Markov maps described in the example of Section 3.2.

Some insight into its operation may be gained by expressing the initial condition in binary

form, i.e. z = .blb2b3 .... To remove any ambiguity in the binary expansion, we introduce

the convention that when a number has two binary expansions, we choose the terminating

one. With this notation, the conditions 0 < z < ½ and < z < I1 correspond to the2 2-

conditions b = 0 and b = 1 respectively. In terms of the binary expansions, the operation

of g can be expressed in the form

(.bbb..= .1b2b3 ... for b = 0
g(.bib2b3 .) = j f - (5.12)

.b2b3b4... for bl = 1

where bi = 1 - bi.

Equation 5.12 may be used to get an idea of the relative frequency with which z, takes

on certain values. The binary expansion of g(z) will have a as its most significant bit

whenever the first bit of z is 0 or the second bit of z is 0. Thus, if the binary expansion of

z0 contains roughly equal proportions of 1's and O's, we expect that the binary expansion

of z[n] = g(z[0]) will have as its most significant bit about twice as frequently as 0. This

intuition may be verified using the techniques of Chapter 3 to compute the the invariant

density, p(z), associated with g. The density is of the form

2 0 < Z < 

) = 4 1 < Z < 

Thus, z[n] takes values in the interval [, 1] with about twice the frequency with which it

takes values in the interval [, 1].

5.3.1 Statistics of the Continuous-Time Current

In previous sections we have determined a model for the evolution of the inductor current

at switching times and shown how its properties may provide some insight into the con-

verter's operation. However, properties of the continuous time inductor current are not

immediately evident from the previous discussion. For example, even though the sampled
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inductor current is described by an eventually expanding map with statistics that may be

approximated using the previously presented tools, we will see that the statistics of the

continuous time inductor current are periodically-time-varying, or cyclostationary. The pe-

riodicity stems from the periodically switched nature of the current-mode control scheme.

This result is potentially of more than academic interest since a statistical characterization

of the continuous inductor current in the converter may provided some insight into energy

radiated from such devices.

This section determines the autocorrelation of the continuous time inductor current.

Although, we will concentrate on the autocorrelation, the technique presents may be more

applicable to a broader class of statistics. Our task is accomplished in two steps. First, we

relate the continuous inductor to the sampled inductor current. Next, using this relation,

we relate the statistics of the continuous inductor current to those of the sampled inductor

current.

5.3.2 Continuous Inductor Currents

We begin by determining a compact representation for the continuous time inductor cur-

rent in terms of the sampled inductor current. The time instant at which the inductor

current takes its maximum value during each switching interval figures prominently in this

representation. As discussed in the derivation of the sampled current map, there are two

possible inductor current behaviors for t between nT and (n + 1)T: either the inductor

current increases linearly with slope m1 for the entire switching interval or the peak current

is reached at some instant during the interval, at which time the inductor current decays

linearly with slope - 2. In the first case, the maximum current occurs when t = (n + 1)T.

In the second case, the maximum is reached at time t = n + mi(nT) We define t to be

the time instant of maximum current, i.e,

t*(i) = min(T, ).
ml'
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With this notation, the continuous time inductor current is of the form

i(t) = i(nT) + mit nT < t < nT + t*(i(nT)) (5.13)

Ip - m 2(t - t*(i(nT))) nT + t*(i(nT)) t < (n + 1)T

Equation (5.13) shows that the continuous current is exactly determined by its samples.

Thus, no information is lost by considering the sampled current.

In order to simplify notation, define the shifted inductor current pulse by

i + mt 0 < t < t*(i)

p(i,t) = ip - m2(t- t (i)) t*(i) < t < T (5.14)

0 otherwise

Thus, for fixed i, the graph of p(i, t) is the continuous time current for times between 0 and

T given that the current at time 0 is i. Alternatively, for fixed t, p(i, t) as a function of

i is the inductor currents value at a fixed time t between 0 and T for all initial inductor

currents i.

Substituting Equation (5.14) into Equation (5.13), the inductor current at any positive

time may be expressed as
00

i(t) = p(i(nT), t - n).
n=O

We shall see below how this expression can be used to compute the autocorrelation of the

continuous time inductor current.

Autocorrelations of the Continuous Time Current

The autocorrelation of the continuous time current is of the form

Rii(t,s) = E(i(t),i(s))
oo 00

= E(Z p(i(nT),t - nT) y p(i(mT), s - mT)).
n=O m=O

Because p(i,t) = 0 when t is not in the interval [0, T], the above expression simplifies

considerably. Specifically, let we break the times t and s into an integer multiple of the
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switching period and a fractional part, i.e. let 7 = t mod T , v = s mod 1, = (), and

k = ( so that t = IT + ,s = kT + v and with land k integers and < , v < T. WithT

this notations, the autocorrelation may be expressed as

00 00

Rii(t, s) = E( p(i(nT), IT+ - nT) A p(i(mT), kT+ v- mT))
n=O m=O

From the definition of p(.,.) (Equation (5.14)) and fact that 0 < v, < T we see that

p(i, kT + vI - mT) is nonzero only when k = m. Thus, the above expression reduces to the

simpler

Rii(t,s) = E(p(i(lT), y)p(i(kT),v)) (5.15)

= E(p(i(lT),tmod T)p(i(kT),smod T)) (5.16)

where k and have are as previously defined. Also, assuming s > t implies k > l, we have

Rii(t, s) = E(p(i(IT), t mod T)p(f k - l (i(lT)), s mod T))

so that the expectation is a correlation statistic of the form discussed earlier. The case t > s

may be handled similarly.

Equation (5.15) makes clear the relation between the statistics of sampled and continu-

ous inductor currents; The autocorrelation is a correlation statistic of the sampled inductor

current. It follows that the techniques of Chapter 4 can be used to compute numerical

values of the autocorrelations. Similar expressions can be derived for the average current,

and the technique seems to be applicable in a broader settings.

Since Rii(t, s) depends on both t and s, the continuous current is not a stationary

process. However, the autocorrelation does satisfy

Rii(t + nT, s + nT) = Rii(t, s),

any integer n. Thus, the continuous time inductor current is wide sense cyclostationary.

This periodicity is a consequence of the switched nature of the circuit.
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Chapter 6

Observation Effects: Maps of the

Interval

This chapter and the next consider the effects observing chaotic signals through linear

time invariant filters. As chaotic signals have been proposed as models for several physi-

cal phenomena [2, 8] as well as for use as signaling waveforms in communication systems

[34], filtered chaotic signals may arise, for example, when chaotic phenomena are mea-

sured through sensors with linear dynamics [35, 36], when chaotic signaling waveforms pass

through a bandlimited channel, and in certain models of physical systems [37].

The means by which a signal is observed may alter the results of the most common

techniques of chaotic time series analysis. For example, estimates of the fractal dimen-

sion and Lyapunov exponents computed from empirical data are often used as diagnostic

quantities to infer the presence of chaos; a low fractal dimension and a positive Lyapunov

exponent indicate chaos. Also, fractal dimension can potentially be used as a signature

quantity for detecting and classifying chaotic signals. When the sensors used to measure

the data are not ideal in the sense that they contain dynamics of their own, there are two

components affecting the results of the data analysis: the underlying chaotic signal, and the

sensor itself. In this chapter, we show that, in general, these two components interact in a

nontrivial manner and that the properties of the measured signal may differ from those of

the underlying signal being measured.
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We will see in Chapter 7 that the behavior under filtering of chaotic signals generated by

invertible chaotic systems differs from that of signals generated by noninvertible systems.

The focus of this chapter is on time series generated by filtered one-dimensional maps, which

are inherently noninvertible.

As we have seen in Chapters 2,3, and 4 the ensemble of time series generated by an

eventually-expanding map with random initial condition may be viewed as a stochastic

process. Furthermore, when the initial condition is chosen according to the invariant density

the resulting process is stationary. It follows that general results from the theory of linear

systems driven by stochastic processes (see e.g. [38, 39, 40]) may be applied to the problem

of determining the statistical relationship between the filter input and output for filtered

chaos. However, we shall be interested in chaotic signals, which have extra structure that

is not accounted for in the classical theory of stochastic processes. In particular, classical

results give no insight into how the geometric structure of a chaotic signal manifests itself

at the filter output.

Empirical evidence indicates that the geometric structure of the input can be obscured

by linear filtering [37, 41]. In order to understand this phenomenon, this chapter considers

two interpretations of the filtered time series-it may be viewed either as the output of a

filter driven by a chaotic signal, or as an observation of the state of a large nonlinear system

that is, loosely speaking, the cascade of a chaotic system and a linear system. These two

views correspond roughly to input-output descriptions and state space descriptions of the

system respectively.

We begin in Section 6.1 by presenting several examples illustrating some of what may

occur when chaotic signals are filtered. Next, we consider in Section 6.2, the input-output

description of filtered chaos. We will see that it is often the case that the filter's input is

related to its output by a simple nonlinear map. Furthermore, in certain circumstances,

the filter output is also governed by a chaotic map. We determine the conditions under

which this occurs. These conditions are applied to synthesize a family of chaotic white

noise generators that may have potential applications in certain signal generation contexts.

Section 6.3 relates the statistical properties of the filter input to those of the output. The

statistical dependencies inherent in chaotic signals allow for some unusual developments.
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We compare chaotic signals to IID non-Gaussian processes, and prove some results leading

to a deconvolution algorithm.

Finally, Section 6.5 views the filtered chaotic signal as an observation of the state of the

larger chaotic system. Through an example, we show that, as a direct consequence of the

noninvertibility of the map, the state of this larger system may evolve on a fractal subset

of the state space. Furthermore, the dimension of this fractal depends on the parameters

of both the map and the filter.

6.1 Some Examples of Filtered Maps

This section presents three examples designed to illustrate some of the possible characteris-

tics of filtered chaotic signals. The basic situation considered in this chapter is as follows. A

signal x[n], generated by a chaotic map f, drives a linear time invariant filter with impulse

response b[n]. The filter output y[n] is completely determined by the following equations:

x[n] = f(x[n-1])

y[n] = b[n]*x[n].

As in the previous chapters, we restrict our study to eventually-expanding maps. Even for

this restricted class, however, the filter output may display a wide range of behaviors. Also,

as might be expected, the properties of the output signal depend on both the filter impulse

response and the map generating the input.

Example 1:

Filtering a chaotic time series need not obscure the entire structure of the input. Suppose,

for example, that the FIR filter with system function H(z) = 1-.9z- 1 is driven by a typical

time series generated by the simple Markov map f shown in Figure 6-1 and of the form

(1) o<< (6.1)f x)= !~ 10-x - 1x0 (6.1)
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Figure 6-1: The Graph of the Markov Map of (6.1)

The output of the filter satisfies

y[n] = x[n] - .9x[n- 1]. (6.2)

Since the values of x[n]J are deterministically related, the filter output at time n may be

expressed as a function of the previous input by substituting (6.1) into (6.2) to obtain

y[n] = f(x[n- 1])- . 9 x[n- 1].

In order to compactly describe the effect of the filter, we define the function O(x) =

f(x) - .9x so that y[n] = (x[n - 1]). The function &, shown in Figure 6-2, is one to one

with a continuous inverse. Thus, the time series x[n] and y[n] are related in a straightforward

manner. Furthermore, by mapping values of y[n - 1] back to values of x[n - 2] through

the inverse of X, followed by mapping x[n - 2] to x[n- 1] through f, and finally mapping

x[n- 1] to y[n] through X, it is evident that y[n] is completely determined by y[n- 1]. This

series of operations is shown in Figure 6-3. More precisely, the consecutive values of the

sequence y[n] are related by a map of the form

y[n] = k(f (-l (y[n- 1])))=g(y[n-1]). (6.3)

The function relating y[n] and y[n- 1] is shown in Figure 6-4.
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In this case, the filter input and output are both determined by (different) one-dimensional

piecewise smooth maps. The structure of the filter output is particularly easy to describe

because the function , which depends on the filter and the map f, is piecewise smooth

and invertible. As we will see in Section 6.2, the situation in which both a filter's input and

output are governed by a one-dimensional map is not uncommon. The next example shows

that other types of behavior are also possible.

Example 2:

Filtering may obscure some of the structure of a chaotic signal. Consider for example, time

series generated by the map f define by (6.1) filtered by the single pole filter

y[n] = ay[n- 1] + x[n].

Plots of y[n- 1] vs. y[n] for filter parameters a = .3 and a = .7 are shown in Figures 6-5 (a)

and (b) respectively. These figures suggest that (for these values of the filter parameter)

the relationship between consecutive samples of the output is multivalued. Indeed this is

the case-the output is not determined by a piecewise smooth one-dimensional map. In

fact, the set of values of the pair (y[n - 1], y[n]) appears to have a complicated structure.

In Section 6.5 we will present an example showing that the output of a filter driven by a

one-dimensional map may actually be a fractal.

One might guess that the fundamental difference between the two previous examples is

that the first deals with FIR filters while the second deals with IIR filters. However, as the

next example shows, IIR filters and FIR filters may have fundamentally equivalent effects

on chaotic signals.

Example 3:

Consider the system depicted in the block diagram of Figure 6-6, driven by a time series

generated by the map of (6.1). From the standpoint of input/output behavior, the cascade

of two subsystems is equivalent to a two tap FIR system. However, we consider each

subsystem separately. As was determined in Example 1, the output of the first subsystem
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y[n] obeys the one-dimensional recursion of (6.3). It follows that the second subsystem of

Figure 6-6 can be considered independently as an IIR filter driven by a time series from the

chaotic map

y[n] = g(y[n- 1]),

where g is defined in Example 1. The output of the second subsystem satisfies the relation-

ship

z[n] = g (z[n -1]),

where gl is as shown in Figure 6-6. Thus, a one-dimensional map may maintain some of its

one-dimensional character even when filtered by an IIR filter.

As the previous examples illustrate, a linear filter may alter a chaotic signal in a variety

of ways. The remainder of this chapter explores conditions under which these different types

of effects occurs.

6.2 Filtered Maps: FIR filters

To begin, let us restrict our attention to filters with finite impulse responses. As we will

show, a functional relationship can always be derived relating a single sample of the input

to a corresponding output sample. The properties of this function determine the properties

of the output.

6.2.1 The Input-to-Output Map

The input signals considered here are generated by the scalar recursion

x[n] = f(x[n- 1]). (6.4)

Since the time series x[n] will be the input to a filter, we refer to f as the input map.

When a time series generated by f drives a finite impulse response filter, the filter input

and output are related in a particularly straightforward way. Specifically, suppose the filter
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output satisfies the difference equation

y[n] = b[O]x[n] + b[1]x[n- 1] + - + b[N- 1]x[n - N + 1]

where the sequence b[n] is the finite length impulse response of the filter. Since the values

of the sequence x[n] are related deterministically by (6.4), the filter output also satisfies

y[n] = b[O] fN-l (x[n - N + 1]) + b[1]fN 2 (x[n - N + 1]) +.-.+ b[N - 1]x[n - N + 1]. (6.5)

Thus, the n-th sample of the filter output depends only on the (n - N + 1)-th sample of

the input.

When FIR filters are driven by chaotic maps, the filter output at any time is a function

of one input sample. We refer to this function as the input-to-output map and denote it by

Ob(x) (the subscript "b" is included to emphasize the dependence of the map on the filter

coefficients). With this definition, the filter input and output are related by the expression

y[n] = b(x[n-N + 1]) (6.6)

where N is the number of filter taps and qb(x) is defined as the right side of (6.5), i.e.,

,b(X) = bo fN-l(x) + blfN- 2 (x) + ' * * + bN-lX.

The input to output map qb(x) is a linear combination of iterates of the input map f. Since

f along with each of its iterates, is piecewise continuous, the input to output map b is

piecewise continuous as well. Its other characteristics depend rather strongly on the input

map and the impulse response of the filter.

6.2.2 Filters Preserving Determinism

Expression (6.6) allows us to determine how some of the analytical and statistical properties

of the output of the filter depend on its input and impulse response. We begin by referring

back to the examples. As illustrated in Example 1, the filter output may, for a certain input

maps and impulse responses, be described by a one-dimensional piecewise smooth map. In
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this case, the filter output may be determined by iterating the map describing the output

from an appropriate initial condition. To emphasize that the value of the filter output at

any time is uniquely determined by a single previous value of the state, we say that such

filters preserve one-state determinism.

The behavior illustrated in Example 1 is not contrived-one-state determinism may be

preserved by more general filters, each filter inducing a different map describing the filter

output. Indeed, any filter b[n] for which b is invertible generates an output governed by

y[n] = O (f(b- (y[n 1]))) (6.7)

= gb(y[n- 1])

where the innermost function maps an output value y[n- 1] to an input value x[n- N], the

middle function maps the input values x[n- N] to x[n - N + 1], and the outermost function

maps the input value x[n - N + 1] to output value y[n]. This sequence of operations

is equivalent to those shown in Figure 6-3. Since it describes the evolution of the filter

output, we will refer to g9b(y) as the output map. Compositions of piecewise continuous

functions are also piecewise continuous. It follows that gb is piecewise continuous when f

is.

Although all input map/ FIR filter pairs generate an input-to-output map, an output

map exists only in certain cases. When the input map is eventually-expanding and the

input-to-output map is invertible, then the filter output is governed by an eventually ex-

panding map. We turn now to the converse question: if the output of a filter has one-state

determinism, must its input-to-output map be invertible? We will see that the answer to

this question is a qualified yes.

A Characterization Theorem

It is conceivable that for certain non-invertible input-to-output maps b, the output still

obeys a one-dimensional recursion, albeit different from (6.7) in form. For instance, when

the filter is simply a delay, its impulse response is b[n] = 5[n - no]. The input-to-output

map is kb = fO, which is certainly not invertible when f is an eventually-expanding map.
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However, the filter output y[n] is simply a shifted version of the input and must therefore be

governed by f. Furthermore, if the filter bn] preserves one-state determinism, any shifted

version b[n - no] will preserve one-state determinism although the input to output map of

the shifted version will not in general be invertible. The following theorem, which is proved

in Appendix B, asserts that for eventually-expanding input maps, these are in essence the

only non-invertible input-to-output maps preserving one-state determinism.

Theorem 7 Suppose that an eventually-expanding map f is the input map to a nonzero

FIR filter b[n] and that b is the associated input-to-output map. Then the filter output

satisfies y[n] = g(y[n - 1]) with g eventually-expanding if and only if Ob(x) has the form

Ob = 1 O fk

for some invertible 01 and some integer k > O.

Remark 1: Theorem 7 may be viewed as a characterization of all filters that preserve

one-state determinism for a fixed input map. Specifically, when f is the input map, the set

of all such FIR filters is precisely the set of filters for which Ob is invertible.

Remark 2: From another point of view, Theorem 7 suggests that generally, filtered chaos

is difficult to distinguish using naive methods. Suppose that a signal is observed through

a sensor which is well modeled as an FIR filter. Even when the observed signal displays

one-state determinism, we may not be able to infer the form of the unfiltered input map. In

other words, several input maps may generate the same output map. If neither the filter nor

the input is specified, there is an inherent ambiguity. In short, one-state determinism at the

output is neither a sufficient criterion to determine that a chaotic signal has been filtered,

nor a sufficient criterion to recover the filter input. Furthermore, the absence of one-state

determinism at the output does not preclude determinism at the input. This implies that

simple scatter plots of physical data may be inadequate to discern a filtered chaotic signal.

Several groups have proposed techniques for detecting filtered chaos and inverting the

filter based only on the filter output [35, 36, 42]. These techniques are based primarily

on heuristic analyses. The results of this section indicate that any method for detecting
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filtered chaos and recovering the input that is based only on the filter output cannot be

consistently successful. However, as we will see in Section 6.3, the ambiguity can be precisely

characterized.

Application: Synthesis of Chaotic White Noise

The results of the previous section suggest a procedure to generate a family of eventually-

expanding maps that generate time series with fat power spectra. Such maps may be

potentially useful, for example, as signaling waveforms in some communication systems

[34]. The only previously reported examples of maps that generate spectrally white chaotic

signals seem to be the symmetric tent map and the symmetric logistic map [18]. The family

derived below depends on a parameter and hence contains a continuum of maps. We will

refer to such maps as chaotic white noise generators.

Consider the family of tent maps with parameter a given by

O<x<a
fX() = - - (6.8)

- a < x <1.

As was shown in Section 3.1, the process associated with f has a power spectrum of the

form
1

S(z) 1 - (2a- l)Z-112

If the whitening filters for this spectrum preserve one-state determinism, the output map

of the whitening filter will generate time series with a white spectrum.

There are two FIR whitening filters corresponding to the minimum phase and maximum

phase spectral factors of Sxx(z). Specifically, the filters with system functions

B1 (z) = 1- (2a- 1)z- 1

B 2 (z) = 1- (2a-1)-lz- '

both perform the whitening operation. Since these are FIR filters, the previous results of

this section apply. Suppose we choose B2 (z) as our whitening filter. The input-to-output
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Figure 6-7: Input-to-Output Map the Whitening Filter

map is

Ob2 (x) = f(x) + (2a - 1)-'x.

By substituting in the explicit form of f from (6.8), we obtain the following functional form

for 4b 2 ,

aa-1) X 0 < x < a
Ob2()- 1--= a (a-1)a2a--1) < 

I-a + (-1)(271)X a < X <1

Figure 6-7 shows the normalized input-to-output map (1 - 2a)ob2 (x) corresponding to the

scaled whitening filter (1- 2a)B2 (z), which generates a filter output taking values only

between 0 and 1. We infer from this plot that Ob2 is invertible for every value of a between

0 and 1; hence, the filter output is governed by a piecewise linear output map.

Since the input-to-output map is invertible and we have an explicit expression for it,

the output map exists and can be determined by a direct application of (6.7). Through

straightforward but somewhat tedious calculations the output map can be shown to have the

graph shown in Figure 6-8. For parameter values a between 0 and 1, the above construction

yields a map which generates spectrally white time series.

Although each member of the family of white noise generators constructed above has

the same spectral properties, the time series will in general have different characteristics.

Examples of time series generated using several different parameter values are shown in

Figure 6-9 (a)-(d).
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In principle, the technique of applying a whitening filter applies to maps more general

than tent maps. In particular, as we have seen in Chapter 3, all piecewise linear Markov

maps have rational spectra and hence have rational whitening filters. However, it is impor-

tant to emphasize that many piecewise linear Markov maps have no whitening filter that

preserve one-state determinism. An interesting area of future work is the characterization

of all piecewise linear Markov maps that generate chaotic white noise.

6.3 FIR Filtered Maps: Statistical Properties

The results of Section 6.2.2 give conditions under which the output of an FIR filter can be

generated by one-dimensional maps when the input is generated by a one-dimensional map.

This result relates the deterministic properties of the filter input and output. It does not

however provide much insight into the relationship between the statistical properties of the

input and output maps. In this section, we explore this relationship.

6.3.1 Chaos vs. Statistical Independence

As might be expected, the probabilistic properties of filtered chaotic signals are quite dif-

ferent from those of filtered sequences of lID random variables. However, because the

properties of filtered IID sequences are well understood, they provide a counterpoint to

filtered chaos. For example, when finite variance, non-Gaussian IID sequences drive a non-

trivial linear filter, the marginal pdf of the output must differ from the marginal pdf of the

input [43]. This fact has practical implications; for example, it forms the basis for a large

number of deconvolution algorithms. The most common techniques choose an inverse filter

that forces the output pdf to match the input pdf (see e.g. [43]). As the following example

shows, the marginal pdf of a chaotic signal can sometimes remain unaffected by filtering.

This implies that chaotic signals generated by one-dimensional maps cannot be deconvolved

using traditional techniques.

Example: According to the results of the Section 6.2.1, the output of an FIR filter driven

by a one-dimensional map is related to an input sample by the piecewise monotonic input-

to-output map bb. The existence of such a mapping allows us to directly determine some
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of the statistical properties of the output.

Suppose the input map f(x) is the skewed tent map given by

3x
3(1-x)

2

(6.9)

The map (6.9), like all tent maps, has a uniform invariant density (see Section 3.1). Suppose

that a time series x[n] generated by f drives the filter

y[n] = .6x[n] - .2x[n - 1] + .6x[n - 2].

It follows that the input-to-output map +(x) is of the form

(x) = .6f 2 (x) - .2f(x) + .6x.

Straightforward calculations yield the following expression for +(x):

=(- 1

27x
TX

9 27
10 1-

9 3_ _ 
4 4

12 _ 9X
5 5

0<x< 1

79 < X < 33 < X < g
7 < X < I

(6.10)

The graph of ¢ is shown in Figure 6-10.

If the initial condition of f is chosen according to the uniform invariant density, it is

straightforward to show that the marginal density of x[n] is uniform for all positive n. In

particular, since the filter output is related to the input through the input to output map

of (6.10), its marginal density can be determined using standard techniques for determining

the density of a function of a random variable [40, 44]. Specifically, the density, p, of the

filter output satisfies

5 px(5) + 10 p(9-10y) + 12 p(4y+3)

7+p27+ 273 27 27._: 9
4p ( 4y+3 ) + p.(12-1,)
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Figure 6-10: The Input-to-Output Map (6.10)

Since px = I1 on [0, 1] it follows that py = pa and so the pdf is unchanged by filtering.

Remark 1: The example is intended to illustrate the possibility that the marginal pdf of

the input may be unaffected by filtering. This phenomenon is possible only because of the

strong dependence between the samples of the filter input; when there is no dependence,

the input is an IID random process and the marginal density must be affected by filtering.

Thus, unlike IID non-Gaussian processes, chaotic processes may not be uniquely recovered

after filtering given only the marginal pdf.

Remark 2: Although the marginal densities of the input and output of the filter are

identical in this example, the filter does not preserve one-state determinism since is not

invertible on [0, 1]. Thus, the filter output y[n] need not be governed by a one-dimensional

map. As will be seen below, nontrivial filters must alter either the marginal pdf or the

one-state determinism of the input. This observation leads to a technique for deconvolving

chaotic signals.

6.3.2 Effects of FIR filtering on Probabilistic Properties

The arguments of the previous example carry over to the general case. Suppose that the

input map f has invariant density p and its initial condition is chosen randomly according

to p. The results of Chapter 2 show that the input sequence x[n] is a stationary stochastic
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process with marginal density p. Since the output sequence y[n] is a filtered version of x[n],

it is also stationary. We denote its (time invariant) marginal pdf by ps. By the results of

the previous section, the input and output of the filter are related by the piecewise smooth

input to output map b, i.e.

y[n] = Pb(x[n]).

As above, the pdf of y[n] may be readily determined using standard results from prob-

ability theory [40, 44]. In particular, when b is invertible the pdf of the filter output may

be calculated by

d ~~~~~~~~(6.11)Py(Y) = Pz(Ob' l())I d yyb (y)l (6.11)

whenever the derivative on the right hand side exists. When the input-to-output trans-

formation is not invertible, the situation is only slightly more complex. in this case, the

relation between the input and output is

py(y) = pX(x)/Id b(x)l. (6.12)
xEb (%)

In this noninvertible case, the value of the output pdf at a point y is a weighted sum of

the values of the input pdf at each point mapping to y through the transformation b. The

weight of each term in the sum is the reciprocal of the slope of Ob at that point 1.

The relationship of (6.12) may be viewed as an operator mapping an input pdf to an

output pdf. From this viewpoint, it may be interpreted as the Frobenius-Perron operator

of the nonlinear mapping b. When the stationary density of f is also a stationary density

of b, the filter input and output will have the same marginal pdf. In other words, the

marginal pdf of the input will appear at the output for filters satisfying

px(y) = E px(x)/Id b(x)I. (6.13)
xE0'(y)X

'Since kb(x) is piecewise monotonic, so is its inverse. It follows that the derivative exists at all but a
finite number of points. These points do not affect the density.
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Remark: In Section 6.2.2 we completely characterized the set of filters preserving one-

state determinism. The reasoning of Remark 2 of that section can be used to infer that

an inherent ambiguity exists in any scheme to recover the filter input that is based strictly

on an observation of its output. This follows because several filters may preserve one-

state determinism. Equation (6.13) provides an analogous result for filters that preserve

the marginal probability density of the input. Since we can construct nontrivial filters

preserving the marginal pdf of a chaotic signal, any scheme to recover the chaotic input to

a filter based solely on its marginal pdf will also have an ambiguity.

6.4 Deconvolution of Chaotic Signals

In light of the last remark, it is natural question to ask what amount of a priori information

about the filter input is necessary to recover it based only on the filter output? This section

addresses this question for certain input maps and filters.

6.4.1 Deconvolution Theorems

The results of the previous section show that individually, neither one-state determinism

nor the marginal pdf is sufficient to recover the filter input from its output. However, the

next lemma shows that together, one-state determinism and marginal pdf impose stronger

constraints on the filter input and output pair when the input map is continuous. In

particular, the next theorem, which is proved in Appendix B, asserts that for continuous

input maps, the only FIR filters preserving both one-state determinism and marginal pdf

are simple delays.

Theorem 8 Consider a continuous eventually-expanding input map and suppose that a

nonzero FIR filter b[n] preserves one-state determinism. Then bn] preserves the marginal

pdf of the input if and only if b[n] = 6[n - no] for some integer no.

Although one hypothesis of Theorem 8 is that the input map is continuous, the results

do not appear to depend fundamentally on continuity. It seems reasonable that the proof

of Theorem 8 can be extended to include discontinuous input maps.
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Suppose that an FIR filter b[n] preserves one-state determinism and has the further

property that the input and output maps are identical. Then the marginal pdf of the input

is preserved. According to Theorem 8 the filter is necessarily a delayed impulse. Thus

Theorem 8 has the following immediate corollary.

Corollary 1 Consider an FIR filter b[n] which preserves the one-state determinism of a

continuous eventually-expanding input map. Suppose that the input map and the output

map are identical. Then the filter is a simple delay, i.e. bn] = 6[n - n].

Note that the previous theorem and its corollary are stated without direct reference

to the input-to-output map. This leads us to conjecture that Corollary 1 may apply to

IIR filters as well. In the case of IIR filters, the input-to-output transformation may be

more difficult to determine and the techniques used to prove Theorems 7 and 8 (and hence

Corollary 1) may not apply. However, since Corollary 1 applies to all finite length filters,

it seems plausible that it will hold also for filters with infinite extent impulse responses.

More specifically, we conjecture that when b[n] is a stable filter that preserves the one-state

determinism of an eventually-expanding input map and the input map and the output map

are identical, then the filter is a simple delay, i.e. b[n] = [n - no].

6.4.2 Deconvolution by Dynamics Matching

This section describes a technique for recovering a chaotic signal from a filtered observation.

The approach is based on the conjecture of Section 6.4.1 and assumes that the input map

is known. The results presented here are of a rather preliminary nature and are included

primarily to suggest the viability of our approach.

Again, we consider a filter driven by a chaotic signal generated by a one-dimensional

map. As usual, the input map, the input time series and the filter impulse response are

denoted by f, x[n] and bn] respectively. The filter output is y[n] = bn] * x[n]. We wish

to recover x[n] based only on an observation of the filter output and the knowledge of the

input map f.

The approach involves choosing an inverse filter with impulse response c[n] such that
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its output

z[n] = c[n] * y[n] (6.14)

= c[n] * b[n] * x[n]

satisfies z[n] = f(z[n- 1]). Theorem 8, Corollary 1 and our running conjecture suggest that

when such a c[n] can be found, the impulse response of the cascade, c[n] * b[n], must be a

simple delay. Because the inverse filter c[n] is chosen so that its output follows the same

dynamics as the input, we refer to this approach as dynamics matching.

A straightforward algorithm for determining a dynamics matching inverse filter is based

on an objective function that is minimized by the desired filter. A dynamics matching filter

will necessarily minimize the objective function

oo0z

J = (z[n] - f(z[n- 1))2,
n=1

since in this case, J = 0. This suggests choosing c[n] to minimize J. One difficulty with

this approach occurs when the map f(x) has a fixed point at zero, i.e. f(O) = 0. In this

case, the trivial filter c[n] = 0 for all n minimizes J. This trivial minimizing solution can be

eliminated by requiring the filter output power to equal the input power. Since the power

in the input and power in the output are their respective variances, this corresponds to

2 2adding the constraint oz = at .

The approach we will pursue is to solve the following optimization problem

L-1minimize J = EZ.(z[n] - f(z[n - 1]))2 (6.15)
subject to Lz-1 )2 0.2n~=0 ([n] - -)5=o

where L is the length of the filtered data record, the variance of the z[n] is estimated from

the data by the sample variance, and is the sample mean

z= 1 Zz[n].
n=O

The objective function J depends on the filter parameters through (6.14). The value of %
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may be determined directly from the map f using the techniques of Chapters 3 and 4. Of

course, since we are optimizing with respect to the impulse response parameters we will

necessarily be restricted to FIR filters c[n]. However, this restriction does not appear to be

serious since we are free to choose arbitrarily long filters.

In order to determine whether optimization of the constrained objective function (6.15)

is a potentially useful method for deconvolution, a set of computer simulations has been

performed. In each experiment, the optimization (6.15) has been performed on a time

series generated by filtering a sequence generated from an eventually-expanding map. The

one-dimensional map used in each experiment is of the form

7X3+ 3 0 < < 3
10 - 10

f 5 0- 10 f(x) = -43x + 7 3_. < 2 < s6

t 2 + l < <1-~+~ e-<x~l10-- --

This map was chosen because of its relatively simple form and because its power spectrum

is not white. Its associated time series are therefore not signals for which a traditional

whitening approach to parameter estimation would work.

The following three filters were used to generate the data for the experiments:

* The linear phase filter

B1 (z) = 0.0565 - 0.1885z - + 0.5100z-2 - 0.1885z 3 + 0.0565z- 4 .

* The all pole filter

B 2(= A(z )

* The all pass filter
A(z)

B3(z) = A(z)

The polynomial A(z) used in the definition of B 2 (z) and B 3(z) is defined to be

A(z) = 1 + 0.78z - 1 + 0.58z- 2 - 0.04z- 3 - 0.11z- 4 - .0882z - 5.
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Filter Initial Final
Value Value

H1 452 0.025
[H2 H 1630 0.12
H3 84.3 0.038

Table 6.1: Initial and Optimized Values of the Objective Function J

and both B2(z) and B 3 (z) are causal filters. Neither B1 nor B3 has a stable causal inverse;

they were chosen to evaluate the ability of the objective function (6.15) to approximately

invert non-minimum-phase systems . On the other hand, B 2 (z) has a causal FIR inverse.

It was chosen to evaluate how the objective function performs under ideal conditions-as

mentioned above, we are restricted in practice to FIR filters c[n].

For each filter, 50 experiments were performed. Each time series was generated with

a random, uniformly distributed initial condition between 0 and 1. For each time series,

the optimization was performed using the optimization routines of the commercial software

package Matlab. In each case, the length of the filter c[n] is fixed somewhat arbitrarily at

19 taps. Two measures of the effectiveness of the algorithm have been computed. First,

Table 6.1 presents a measure of how well the dynamics are matched before and after the

optimization is performed. More specifically, it shows the value of the objective function

J before the optimization and the value after optimization. Second, Table 6.2 displays a

measure of how well the filter c[n] inverts the effect of the Bi. The measure has the form

pi(c[n])-En I(h * c)[n] - maxn(I(hi * c)[n])l
E I(hi * c)[n]I

The quantity Pi takes values between 0 and 1 and is a measure of concentration of the

composite impulse response. Loosely speaking, smaller values of pi indicate a more impulse-

like sequence with most of the cumulative magnitude of its values concentrated in just one

of its samples. Larger values of Pi indicate that the impulse response is spread out. Note

that Pi is invariant to scaling of c[n]. The table presents the value of Pi for the initial and

optimized values of c[n]. The numbers presented in both tables are averages over all of the

experiments. An example of the result of the technique is shown in Figure 6-11. The upper
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Filter Initial Final
Value Value

Hi 0.49 0.017
H2 0.66 0.033 
H 3 0.81 0.041

Table 6.2: Initial and Optimized Values of the Dispersion Measure Pi

30

Figure 6-11: Example of an Equalized Impulse Response

plot is a graph of the impulse response associated with the system function H3 (z). The

lower plot is a graph of the overall impulse response h3[n] * c[n] after the optimization has

been performed. This is the result of a single experiment and does not represent an average

value.

For each experiment the optimization routine was initialized with a filter consisting of

all zeros with the exception of the tenth tap, which was set to . Using this initialization,
Cty

the optimization routine did not always converge to a good inverse filter; that is, for some

experiments, the value of the objective J was large even after the optimization was per-

formed. For the filter H1, the optimization routine converged to a "good" inverse filter in

49 out of 50 runs; for H2 44 out of 50 runs gave good results; and for H3 all 50 runs gave

good results.

These computational experiments are not meant to be an exhaustive performance eval-

uation. Rather, they are meant to indicate the potential of the objective function and
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constraint of (6.15) to determine an approximate inverse filter and recover a filtered chaotic

signal. There are several issues raised by these preliminary results that seem worthy of

further study.

* It is natural to ask whether the objective function has a unique minimum value. The

lack of consistent convergence cited above suggests that the constrained optimization

problem (6.15) has local minima. Further study of this issue may provide some insight

into how the result of any optimization procedure depends on its initialization.

* Since the practical implementation of this technique attempts to invert one filter with

a finite length filter we may ask how the performance of the technique depends on the

filter length.

* It is possible that the performance of the technique may depend on both the filter

and the chaotic map. These effects should be studied.

* The experiments above were performed in a noise free setting. The effects of noise on

the objective function deserves further study.

* The possibility exists that an efficient optimization, taking advantage of the specific

structure of the objective function, may exist. This issue should also be explored.

6.5 Fractal State Trajectories

When a filter preserves one-state determinism, the graph of the output map is well estimated

from the filter output y[n] by a scatter plot, i.e. a plot of y[n - 1] versus y[n]. The set of

points in the scatter plot is necessarily "well behaved" since it is the graph of a piecewise

smooth function. However, when one-state determinism is not preserved, the return map

may have a very complex structure. Example 2 of Section 6.1 suggests that an IIR filter

may generate a return map with a fractal structure with the fractal dimension depending

on the filter impulse response. This is a rather remarkable possibility since the input map

does not, in general, have any fractal structure. In order to gain some insight into how

the fractal return map arises, this section examines an example admitting a fairly complete

analysis.
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Figure 6-12: Return Map Showing Fractal Structure in the Output of a Single-Pole System
Driven by a Chaotic Signal

Consider an input map f of the form

2x 0 < x < 
f(x) = 2x mod 1 = - 2 .

2x-1 < X < 1

Suppose that time series generated by f drives the stable causal single pole AR filter with

system function B(z) = - 1 . The filter output satisfies y[n] = ay[n - 1] + x[n]. When

y[n- 1] is plotted vs. y[n] as in Figure 6-12, the result has a Cantor set cross section, as

we will now show.

The approach we take to analyzing this set is to examine the state space of composite

system consisting of both the chaotic map and the filter. We will then infer the properties

of the filter output from the properties of the state space of the composite system. We will

see in Chapter 7 that this approach is also useful for understanding the effects of filtering

on invertible chaotic systems.

Consider the composite system

E x[n]1 [ f(x[n -1]) 1

y[n] ayj an- 1] + f(x[n- 1])

describing the states of the chaotic system and the filter. We wish to determine the set of
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values taken by the state vector in the steady state. We denote this set by . The set 

is a subset of the plane. Its points can be determined by first calculating the set of values

that the filter state can possibly take for a fixed value of the input, then taking the union

of these sets over all input values. We detail this procedure below.

We wish to find a relationship between the state of the filter and the value of the filter

input. The filter state at time no is

00

y[no] = E akx[no - k], (6.16)
k=O

where transient behavior is ignored by assuming that the system has been running for a

sufficiently long time. We now fix the value of the input at time no to x[no] = x* and

determine the possible values of the output. Since the chaotic map is noninvertible, many

different input sequences satisfy x[no] = x*. It follows that y[no] may take many values. We

will see below that the multivalued nature of the map from x[n] to y[n] induces the fractal

structure apparent in Figure 6-12.

If f were invertible, (6.16) could be rewritten in the form

0o

y[n] = E akf -k (x[n]). (6.17)
k=O

However, since f is two-to-one, it follows that f-' has two branches, f-2 has four branches,

and f-N has 2 N branches. Suppose we wish to construct a sequence x[n] such that x[no] =

x*. The value of x[no - 1] is one of two possibilities given by one of the two branches of

f- 1 . Similarly, given the value at time no - 1, the value of the sequence at time no - 2 is

given by one of the two branches of f-1. Continuing in this manner, we can construct a

sequence satisfying x[n0 ] = x* by making a series of binary decisions. Thus, each chaotic

time series generated by f with value x[no] = x* can be associated with a binary fraction

c = .c 2 c3 ... where ck is either zero or one depending on whether the left or right branch

of the inverse function was taken at time no - k.

Given a sequence of binary decisions c, the inverse function is well defined and has the
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form

f-k (X) = 2 + bjk]

where the offset parameter b[k] satisfies

l b[k- 1] if ck = 0

l =bc[k - 1] + ½ if Ck = 1

From the definition of c it follows that

k

bc[k] = Z i1 (6.18)
i=1

Substituting (6.18) into (6.17) we obtain that the filter outputs associated with x[n] =x*

are given by

oo*
00kX*

y[n] = Zak( +bc[k])
k=O

00 k

= x*2 + Z ak E i-
- a 2

k=O i=1
00 00

X* a + E Ci_ E k

2 a =1 22k=i-1

= z*a + i )jl Ci - 7 , (6.19)
2- a (1 a) =1

where the first equality follows from the definition of y[n] and the inverse function; the

second equality follows from the definition of b[k]; the third and fourth equalities result

from rearranging the innermost summations and simplifying sums of exponentials. The

structure of the set of state values may be determined by examining how y[n] depends on

the binary sequence c. In fact, each value of c corresponds to a different sequence .cIc 2 ...

so the final summation (6.19) can be interpreted as a fraction in base 2'
With y[n] expressed in this form we proceed with the calculation of the box dimension

(see Section 2.1.2) of the set IF. First note that the y[n] depends in an affine way on x*.

Each value of c provides a different offset term for the affine function. Thus, we expect the

set r to have the form of a parallel set of lines. Suppose first that a is positive and choose
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boxes of length 5n = . For fixed x*, all y[n] corresponding to bit sequences c agreeing in
2 *

the first n bits will fall within one 5 , box. There are 2 such sequences. Along the x axis,

1 boxes are required. It follows that Nsn = 2 x Sj. The box dimension is calculated as

dimBF = lim Ns,
n-+oo -log in

log 2n x -1
= lim log2 nx

n-oo -log n

log 2
= 1+ log

log 2 - log a

A similar argument applies to the case a negative. The final result is

log 2
dimsr = 1 + log 2 - log lal (6.20)

According to (6.20), the dimension of the occupied set in the state space increases

continuously from a minimum of dims = 1 when the filter pole is at the origin (a = 0) to a

maximum of dimB = 2 when the pole approaches the unit circle. This is in agreement with

empirical observations.

The fractal dimension of the filter output's return map can be obtained from the above

results. We wish to examine points of the form [y[n - 1], y[n]]. From the definition of the

filter, we obtain the relationship y[n- 1] = y[n]-Az[n]. Thus, the points of F are related to
a

the points of the return map by the linear transformation

E y[n- 1] [ a a 1
.- a a

y[n] J 0 1 y[n]

The box dimension of a fractal set is not changed by linear transformations so (6.20) holds

for the return map as well.

Remark 1: The fractal structure in the return map is linked to the noninvertibility of

the chaotic map f through the choice of binary sequence c.
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Remark 2: The approach used to determine the fractal dimension of the return map

hinged on associating a unique binary sequence with each time series taking a fixed value

at time n. The idea of associating sequence taking a finite number of values (in this case

zero and one) with a chaotic sequence is referred to as symbolic dynamics. All eventually-

expanding maps may be described by symbolic dynamics [45, 19] so it is possible that the

technique presented here may be generalized to handle a larger class of chaotic maps and

filters.
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Chapter 7

Observation Effects: Invertible

Maps

Although the one-dimensional maps on which we have focused until this point form a large

and useful class of systems generating chaotic signals, they are inherently noninvertible.

Many interesting chaotic systems, however, are invertible. Invertible chaotic maps may

arise, for instance, when studying time sampled ordinary differential equations. This type

of map often occurs when analyzing physical systems and is well known to be invertible

[3]. In this chapter, we extend some of the results of Chapter 6 concerning observation and

measurement effects to a class of invertible maps.

The focus of this chapter is on chaotic systems that are dissipative, finite dimensional

diffeomorphisms observed through sensors with linear time invariant dynamics. We con-

centrate on dissipative diffeomorphisms because they model a variety of physical systems

[11] and are analytically tractable. We focus on linear time invariant sensor dynamics for

similar reasons. Linear time invariant systems are a well defined analytically tractable class

that reasonably model a variety of physical sensors. In contrast to the chaotic systems

examined in the Chapters 3, 4, 5, and 6, chaotic diffeomorphisms are invertible and have

more than one state variable. However, the effects of filtering on diffeomorphisms can be

precisely characterized using tools that are similar to those of Chapter 6.

The chapter is organized as follows. Mathematical representations of filtered chaos are
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Figure 7-1: A Schematic Representation of a Filtered Chaotic Signal

discussed in Section 7.1. These representations lead to an interpretation of filtered chaos

as a transformation of the underlying chaotic system that is used in subsequent sections to

determine the structure of the filtered signal. The effects of filtering on Lyapunov exponents

is detailed in Section 7.4.

7.1 Filtered Chaos: Representations

In order to begin the study of the effects of linear time invariant sensors dynamics on chaotic

signals, it is natural to ask how the properties of the measured signal are related to those of

the underlying system. The answer to this question is potentially important, for example,

in interpreting chaotic data measured from some physical system. The specific situation

that we will analyse is illustrated schematically in Figure 7-1.

The chaotic dynamical system F may model for example some chaotic phenomena that

we would like to measure. Its state at time n is denoted x[n], and, unlike the one dimensional

maps we have seen before, is assumed to be a vector in the space IRN with N > 1. The signal

y[n] that drives the filter is generated by a scalar observation of the state x[n] through the

observation function g. The observation function maps state vectors to scalars and may be

interpreted as a model of a scalar measurement of the state of the chaotic system. Finally,

the linear filter with system function B(z) models the dynamics of the sensor.

We assume that the system F is operating in the steady state and thus that the state

vector is confined to some attractor A C RN. Because of the interpretation of the filtered

chaotic signal as a measurement of some underlying chaotic phenomenon, we will often refer

to F is as the underlying chaotic system and A as the underlying attractor.
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The state sequence of the F and the scalar observation of the state are generated as

follows:

x[n] = F(x[n- 1]) (7.1)

y[n] = g(x[n]) (7.2)

The filter output is denoted by z[n] and is generated by the convolution

z[n] = b[n] y[n],

where b[n] is the impulse response of the filter. In this chapter, we restrict attention on

smooth, invertible dynamical systems F with smooth observations functions g. In particular,

we assume that the chaotic map F is a diffeomorphism and that the observation function

g is continuous with bounded partial derivatives. Furthermore, we consider only stable,

causal filters. These technical assumptions allow a fairly precise analysis of the properties

of the filter output. They are also consistent with a large class of physical situations and

as such are not overly restrictive.

Our goal is to determine conditions under which inferences about the structure of the

underlying system and its attractor can be made based on the filter's output. We will

see that, in this regard, embedding theorems (see Chapter 2) are indirectly important. In

particular, we will often perform time delay reconstruction using the filter's output. An

embedding theorem is then used to infer the properties of what we have reconstructed.

There are two equivalent models of a filtered chaotic signal that will be useful in what

follows. They reflect different interpretations of the filter output. We will see that the filter

output may be viewed either as a modified scalar observation of the state of the system F or

as an observation of a modified dynamical system. Each interpretation provides a separate

insight into the effect of filtering on chaotic signals.

The interpretation of filtered chaos as a modified scalar observation of the chaotic system

has been proposed in a less general form in the economics literature [46]. This interpretation

has the advantage that no complexity is added to the underlying dynamics. Its drawback

is that, in general, the modified observation function may have an analytically inconvenient
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form. We circumvent this drawback by introducing a useful model that expresses filtered

chaos as the output of a larger dynamical system. This modified system is the cascade of

the chaotic system and the linear filter. Although the modified system has a larger state

space than that of F, this increased complexity is offset by increased tractability. We will

see that the properties of the filter output may be related to those of this larger system in

a straightforward manner. We now show how these interpretations arise.

7.1.1 Scalar Observation Function

For invertible chaotic system, the filter output can always be expressed as a complicated

observation of the state. This fact seems to have been first noted by Brock [46] in the

context of economic time series analysis. The filtered measurement z[n] is related to the

chaotic driving signal through convolution sum

00

z[n] = E b[i]y[n - i]. (7.3)
i=o

Substituting Equations (7.1) and (7.2) into Equation (7.3) and taking advantage of the

invertibility of F, the filter output at each time can be expressed as a scalar observation of

the state x[n] as follows:

o00

z[n] = Eb[i]g(F-i(x[n]))
i=o

= g(x[n]). (7.4)

When the impulse response represents a bounded-input-bounded-output stable linear sys-

tem, the sum (7.3) converges for all x on the attractor of the nonlinear system. This

interpretation is shown schematically in Figure 7-2.

Recall from Chapter 6 that when the noninvertible maps of the interval are filtered, the

filter output can be expressed as a function of a single input sample when the filter has a

finite impulse response length. When the filter has an infinite impulse response length, such

a representation may or may not exist. In contrast, Equation (7.4) shows that when the

underlying dynamics are invertible, the filter output can always be expressed as a function
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Figure 7-2: A Schematic Representation of Filtered Chaos Interpreted as a Complex Ob-
servation Function

of the current state of the underlying system regardless of the impulse response length.

The representation of filtered chaos as a scalar observation of the chaotic state can

be used to show that in general, finite impulse response filters do not affect the fractal

dimension. The following theorem makes the previous statement more precise.

Theorem 9 It is a generic property that the fractal dimension (Hausdorff or Box dimen-

sion) of an attractor reconstructed from output of an FIR filter by time delay embedding

equals the fractal dimension of the attractor of F.

Theorem 9 is similar to a theorem of Brock [46]. Our result differs in approach and

generality-Brock uses a different technique to prove his result, which holds only for box

dimension.

We shall see below that a different approach is necessary in order to describe the effects

filtering chaotic signals with infinite impulse response filters. In fact, although the observa-

tion function can be determined for general impulse responses, it may not provide much

information about the relationship of the filter output to the underlying chaotic system.

This is because infinite impulse response filters may give rise to observation functions 

that may not be differentiable. In this case, the hypotheses of the embedding theorem are

not satisfied and, as a consequence the properties of the underlying attractor need not be
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related to those of the attractor reconstructed from the filtered time series. In order to

understand the effects of IIR filtering on chaotic signals, we take a different approach.

7.1.2 The Composite System

In order to understand the properties of the filter output, it is convenient to restrict attention

to filters with strictly proper rational system functions. Since many useful non-rational

system functions are well approximated by rational functions, this restriction does not

appear to be too severe. When the filter has a rational system function, it has a linear state

space representation and the filter output can be viewed as the output of a cascade of two

systems-one generating the underlying chaotic signal and one corresponding to the filter

dynamics. Specifically, the filter output z[n] can be expressed as the output of the linear

dynamical system, i.e.,

w[n] = Aw[n - 1] + bg(x[n])

z[n] = cTw[n]

where w[n] is the state of the filter at time n, g(x[n]) is the chaotic input to the filter, and

the matrix A, and vectors b, and c are a realization of the LTI system. The poles of the

filter correspond the eigenvalues of the matrix A and the zeros of the filter are determined

by the vectors b, and c. Many such realizations exist [47] but because we are primarily

concerned with input-ouput behavior, we exclude those that have poles and zeros that cancel

we consider only minimal realizations of the filter.

Since the underlying chaotic system and the filter dynamics are coupled, the filter output

can be expressed as an observation of the state of a nonlinear dynamical system with state

equations

x[n] = F(x[n- 1])

w[n] = Aw[n- 1] + bg(F(x[n- 1])). (7.5)
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The filter output is given by

z[n] = cTw[n]. (7.6)

In what follows, it is convenient to write Equation (7.5) in the more compact form

[ n[] ] = s[n] = Q(s[n- 1]) (7.7)
w[n]

where the Q is defined by

q(s) =Q()
w Aw + bg(F(x))

We refer to Q as the composite dynamics or the composite system and the vector sin] as as

the composite state. The composite system has dimension M+N where N is the dimension

of the state space of the underlying chaotic system F and M is the degree of the filter. Note

that the composite system approach applies to both finite impulse response and infinite

impulse response filters.

The filter output can be determined from the state of the composite system by the

observation function

z[r] = Js[n] = j (s[n])

where c is the N + M dimensional vector

C

and c is the observation vector of the linear system in Equation (7.6). Since the observation

function l for the composite system is a linear function of the state, it is continuous and

differentiable. The overall situation is illustrated in Figure 7-3.

The motivation for introducing the composite system is that in many circumstances

its properties may be inferred from a smooth observation of its state. This is a direct

consequence of the embedding theorem. Since the filter output is a smooth observation of
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Figure 7-3: A Schematic Representation of Filtered Chaos Interpreted as the Output of a
Composite System

the composite system state, an alternative view is that the properties of the filter output

may be determined by understanding the properties of the composite system. It is the

latter viewpoint that is most useful in the current context. In essence, the embedding

theorem allows us to determine the properties of filtered chaos indirectly by determining

the properties of the composite system.

Note that the composite system is differentiable because F and g are. Furthermore,

when A is invertible, the transformation Q is invertible with inverse given by

F- (x) J
A- (w - b(x))

Since F is a diffeomorphism and g is continuous and differentiable, Q has a continuous

inverse with continuous derivative. Thus, when A is invertible, Q is a diffeomorphism and

the composite dynamics and observation satisfy the hypotheses of the embedding theorem.

We thus expect that many properties of the composite system may be determined from the

filter output.

When A is not invertible, as for example when it represents filter with a finite impulse
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response, the composite system Q may not be a diffeomorphism. It follows that the hy-

potheses of the embedding theorem are not met. However, in this case, Theorem 9 of

Section 7.1.1 is applicable. Thus the combination of the composite system and the scalar

observation representations cover both infinite and finite impulse response length filters.

As shown in Figure 7-3, the composite system consists of a nonlinear component and a

linear component coupled through the observation function g(-). The state of the nonlinear

system evolves independently of the state of the linear system. We thus expect that some

of the properties of the underlying system are preserved by filtering. We shall see below

that for Lyapunov exponents, this is the case. On the other hand, the extra state variables

of the composite dynamics may influence the behavior of the overall system. We will next

examine the relationship between the properties of the composite system Q and those of

the underlying system F.

7.2 Filtered Chaos: The State Space Transformation

The state of the composite system consists of two components: one due to the underlying

nonlinear system and one due to the linear filter. In this section we develop the relationship

between these two components. We shall see that to each point in the state space of F there

corresponds a point in the state space of the composite system Q. The correspondence

between these points is determined by a transformation depending on both the filter and

F. The properties of this transformation will allow us to infer, among other things, the

form of the attractor of the composite system and the fact that filtering cannot completely

obscure chaotic structure in the filter input. We now turn to the problem of deriving this

transformation.

Referring to Equation (7.7), we see that the second component of the composite state,

s[n], is the state of a linear time invariant system. Its value at time n can be computed in

terms of its initial value and all previous inputs through a convolution sum. More precisely,

the state of the composite system at each time is

w[n] ] [ Anw[] + n=0 Abg(F-k (x[n])), ] (7.8)
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where we have used the relationship x[n - k] = F-k (x[n]). Notice that the filter state, w[n],

depends on the filter's initial condition. Although this fact is an elementary result from

linear systems theory, it has an important implication when the filter is stable. In this case,

the term A'w[n] approaches zero as n gets large. Thus, in the long time limit the initial

state of the filter is negligible and the filter state depends only on its input. Because the

underlying chaotic system F is invertible, the entire input state sequence is determined by

its current value and thus, in the steady state, the filter's state depends only on the current

state of the underlying dynamics. In what follows, we assume that the filter has reached

the steady state and consequently that its the effect of its initial condition is negligible.

To simplify the notation, we rewrite (7.8), which describes the state of the composite

system at time n, in the form

xV] ~~~~~~~, ~~(7.9)sLn] t x[n]T(x[n]) 

where T(x) = = Akbg(F-k(x)). and the infinite upper limit in the sum defining T(x)

is a consequence of the assumption of steady state operation Equation (7.9) shows that the

state of the composite system operating in the steady state is a function only of the current

state of the underlying chaotic system. We show next that this relationship between the

composite state vector sn] and the underlying state vector x[n] is a useful tool for examining

the effects of filtering on chaotic signals.

Equation (7.9) implies that for any value of the state of the underlying chaotic system,

the filter state is uniquely determined. Suppose we define the transformation P(x) by

X
P(x) = , x A(7.10)

T(x)

Then P maps the N dimensional state space of the underlying chaotic system, F, to the

N + M dimensional state space of the composite system Q. We call the map P the state

space transformation associated with F and the filter.

The state space transformation, P, relates points in the state space of the underlying

chaotic system to points in the composite state space in the steady state. Strictly speaking,

the map P should be viewed as a map from the attractor of the underlying system to
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the composite state space since in the steady state, the state of the underlying system is

confined to the attractor A. On the other hand, the primary assumptions used to derive the

state space transformation were that the initial condition of the filter is negligible, and the

sum T(x) = Z]=0 Akbg(F-k(x)) converges. Thus, the state space transformation is valid

for all x for which these two assumptions hold. This set may be larger than the attractor.

In the next section, we examine how the properties of the state space transformation

influence the properties of the composite system.

7.3 Fractal Dimension of the Composite Attractor

When the attractor A of the underlying chaotic system F is a fractal set, the attractor F of

the composite system Q is the image of a fractal set through the state space transformation.

Thus, the problem of determining the fractal properties of the composite attractor is related

to the problem of determining how fractal sets behave under transformations. The problem

of determining the fractal properties of the composite attractor is complicated by the fact

that, although the state space transformation is continuous l, continuous transformations

may change the characteristics of a fractal set. However, the state space transformation,

P, is not an arbitrary continuous transformation. Its special form allows us to determine a

condition, which depends on the filter, under which the dimension of the composite attractor

is exactly equal to that of the underlying attractor. This result is potentially important

when performing time series analysis with measured chaotic signals since as we shall see, it

implies that some filters provide a more faithful measurement of chaos than others.

7.3.1 Weak Filters and Fractal Dimension

We will now determine conditions under which filtering does not change the fractal dimen-

sion of a chaotic attractor. Motivated by the discussion of fractal sets Chapter 2 and in

particular Theorem 1, we make the following definition.

Definition 4 A causal, filter with rational system function is a called weak with respect to

the pair F, g if the state space transformation it induces is bi-Lipschitz.

'Continuity of the state space transformation is established in Appendix C
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We will refer to filters that are weak with respect to pair (F, g) as weak filters when (F, g) is

obvious from context. Combining Theorem 1 with the definition of a weak filter immediately

yields the following:

Theorem 10 The attractor of a composite system, Q induced by a weak filter has fractal

dimension that is equal to the attractor dimension of the underlying system F.

In other words, Theorem 10 says that weak filters do not change fractal dimension.

Weak filters were defined above in an indirect manner. The following theorem, which is

proved in Appendix C, directly provides a characterization of a subclass of weak filters in

terms of state space filter representations.

Theorem 11 Suppose that F is a dissipative diffeomorphism with Lyapunov exponents

A1 A2 > ... > AN and A has eigenvalues y71,...yM ordered such that [71t > 1721 >

1y7MI. Then if log (yl lI) < AN the filter is weak.

Theorem 11 provides an easily verified sufficient condition for a filter to be weak. A

necessary and sufficient condition would provide a complete characterization of the class of

weak filters; however, such a condition appears to be more difficult to determine. In any

event, the sufficient condition of the theorem does have a potentially important consequence.

In particular, the fractal dimension of the composite attractor and the fractal dimension of

the underlying attractor will be equal when the filter is weak with respect to the underlying

dynamics. Since the composite attractor represents the measurement through a linear time

invariant system, Theorem 11 implies that if the fractal dimension of a measured chaotic

signal must be determined precisely, the sensor should be designed to be weak with respect

to the dynamics being measured.

Theorem 11 has an intuitive explanation based on the interpretation of Lyapunov expo-

nents as a measure of sensitive dependence on initial conditions. It can be shown (Yamamoto

[48]) that the Lyapunov exponents of a linear system with dynamics characterized by the

matrix A are given by {log(I-yil)} where {(yi} 1 is the set of eigenvalues of A. It follows that

stable linear systems have negative Lyapunov exponents. The state space transformation
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has the form

P(x) Akg (F-k(X))

and so depends on iterates of the inverse system F-'. According to the results of Ruelle

[49], the Lyapunov exponents of the inverse system are simply related to those of the

forward system. Specifically, Lyapunov exponents of F-' are the simply those of F but

with opposite signs. In other words, if the Lyapunov exponents of F are ordered such that

Al > A2 > ... > AN then F-' has exponents -AN > -AN- 1 > ' >-A 1 .

With this in mind, the condition log(I-yll) < AN can be seen to have the following

explanation. Since the filter is stable, it tends to contract distances in the composite

state space at a rate that is at least log(Iyll) per iterate. The inverse system F- 1 can

expand distances in the composite state space at an asymptotic rate no greater than ANI.

The condition log(Iyl) < ANI implies that when the rate of contraction due to the filter

dominates the rate of expansion due to the inverse chaotic system the filter is weak. In

terms of the forward system, we see that the filter response must decay faster than the rate

defined by the minimum Lyapunov exponent of F. When this is the case, the state space

transformation is differentiable and no change in fractal dimension occurs.

7.3.2 Potential Increase in Fractal Dimension

Until now, we have concentrated on determining filters that do not change the fractal

dimension of the attractors we wish to measure. Neither finite impulse response length

filters nor weak infinite impulse response filters will affect the dimension. One may ask

what happens when an infinite impulse response length filter is not weak. In this section,

we present some empirical evidence that suggests that fractal dimensions may potentially

be changed by filters that are not weak.

It is difficult to quantify the effect of filtering on fractal dimension when the filter is

not weak. There is however empirical evidence that filtering may cause the composite

attractor (and hence the reconstructed attractor) to have higher fractal dimension than the

underlying attractor [36, 42, 50, 35, 51, 41]. Figure 7-4 illustrates this phenomenon with a

plot of estimated box dimension versus filter parameter for an attractor reconstructed from
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Figure 7-4: Empirically Observed Increase in Fractal Dimension Due to Filtering

the output of a single pole filter driven by a chaotic signal. The chaotic signal is generated

by the Henon map

x [n] 1 1 + y[n - ax 2[n-1] (7.11)

y[n] J x[n-l] ]

The filter output is generated by the one dimensional linear state space system

z[n] = az[n - 1] + x[n].

The fractal dimension computed is the capacity dimension and is computed from a data

set of 10000 state vectors of the composite system using a standard algorithm . The

fractal dimension was computed at 20 values of the filter parameter between a = -0.95 and

a = 0.95. The actual dimension of the underlying attractor is approximately 1.2.

There are several interesting features apparent in the graph of Figure 7-4. First, the

fractal dimension seems to show a negligible increase due to filtering for values of the filter

parameter with absolute value less than about 0.2. The Lyapunov exponents of the Henon

map are approximately log(1.52) and log(0.198). This would appear to be consistent with

the analysis of the previous section since in the range -0.198 < a < 0.198 the filter is
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weak and we expect no increase in dimension due to filtering. Second, the fractal dimension

plot is nearly symmetric about the origin. This may reflect a relation between the filter

parameter and the fractal dimension of the composite attractor that depends on the radius

of the filter pole and not its phase. Finally, the observed fractal dimension seems to increase

as the pole radius increases. This may reflect the fact the as the pole radius increases, the

filter is farther away from being a weak filter. Perhaps filters with strong dynamics are able

to effect a stronger change in the fractal dimension of the composite attractor.

FIR vs. IIR Filtering

The above results may be summarized as follows. Weak filters cannot increase fractal

dimension while other filters may. All finite impulse response filters are weak, while some

infinite impulse response filters are not. The empirical results of the previous section imply

that IIR filtering may cause an increase in the dimension of the attractor observed at the

filter output. In light of the fact that any IIR filter with a rational system function can be

approximated arbitrarily well by an FIR filter of sufficient length, it is not clear why the

two types of filters should have fundamentally different effects on chaotic signals.

This issue has not been fully resolved and deserves further study. However the following

heuristic discussion indicates a fundamental difference between FIR and IIR filtering that

may explain the different effects on chaotic signals. Fractal sets display scaling behavior at

all length scales. Stable, rational IIR filters have exponentially decaying impulse responses

that also display scaling behavior at all scales. It seems that this infinite scaling property

is what allows IIR filters to distort the fractal structure of chaotic signals.

The impulse response values of FIR filters must show scaling behavior over at most a

range of scales-no matter how long an FIR filter is, there is an impulse response value

that is largest in magnitude and one that is smallest. It seems that "scale limited" nature

of FIR filters is what limits their ability to distort the fractal structure of a chaotic signal.

On the other hand, since all numerical techniques for estimating fractal dimensions from

data operate only over a finite range of scales, FIR filters may have an effect on numerically

computed dimension estimates.
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7.4 Lyapunov Exponents for the Composite System

In this section we explore the effects of filtering on Lyapunov exponents. A defining property

of chaotic system is sensitive dependence on initial conditions, which is characterized by the

Lyapunov exponents of the system. As mentioned in Chapter 2, Lyapunov exponents may be

interpreted as the divergence rate of state sequences started from initial conditions that are

slightly perturbed from one another. Because the composite system consists of a nonlinear

chaotic system driving a linear system the effect of perturbations to each subsystem may

be examined separately. Changes to the state of the nonlinear system affect the state of the

linear system. However, because there is no feedback from the filter output to the nonlinear

subsystem, a perturbation to the state of the linear subsystem has no effect on the state of

the nonlinear subsystem. It seems plausible therefore that the Lyapunov exponent of the

composite system can be broken into two groups, one due to the linear system and one due

to the combination of the nonlinear and linear systems.

We will see in this section that the group of exponents due to the linear system can

be computed directly by computing the magnitudes of the eigenvalues of the linear sys-

tem. However it is not clear that the second group of exponents are simply related to the

Lyapunov exponents of the system F. We will explore these issues below.

The Lyapunov exponents are computed from the derivative matrix of the dynamics as

described in Chapter 2. The derivative matrix of the composite system has the form

DQ(s) =DF(x) 0 (7.12)
bdg(F(x))DF(x) A

The block triangular form of the right side of Equation (7.12) is a consequence of the

manner in which the linear and nonlinear systems are coupled; the zero matrix shows that

perturbations to the state of the linear system do not affect the state of the underlying

nonlinear system.

The Lyapunov exponents depend on the behavior of the product

1

(DQ) (s) = I DQ (s[i]) (7.13)
n
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where s[i] = Qi(s) is the state value at time i. Referring to Equation (7.12), we can derive

an expression for the matrix product in terms of the component matrices of DQ(s). The

product has the form

(DF')(x) 0
(DQ )(s) = [° 1 (7.14)

0 An-J bdg(F(x))(DFIJ)(x) A ' J

and is lower triangular since each term of the product is.

7.4.1 Exponents Due to the LTI Subsystem

In order to use expression (7.14) to determine the Lyapunov exponents for the composite

system, we recall that the Lyapunov exponents satisfy the following equations

Ai = lim -log(J (DQ) (s)uil),
n-+oo n

where ui is a vector related to the ith exponent. Consider first vectors of the form

0
U-u=[O].

In this case, the product (DQ')(s)u is equal to Akf. If {yi}M 1 are the eigenvalues of A,

a theorem of Yamamoto [48] can be invoked to show that the Lyapunov exponents in this

case are simply the magnitudes of the eigenvalues of A. More specifically,

lim k log(lAkfill) = log(IyIl)
k-+co k

where fi is in the span of the generalized eigenvectors corresponding to the eigenvalue Yi.

Thus, the heuristic reasoning outlined above holds for the linear portion of the composite

system.
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7.4.2 Exponents Due to the Nonlinear Subsystem

The negative the Lyapunov exponents corresponding to the underlying nonlinear system F

are a bit more difficult to determine. However, the positive Lyapunov exponents can be

determined in a manner analogous to the above. We consider vectors of the form

V--
0

In this case, the product of interest is of the form

(DQ')(s)v = [ (DF (x)(I
Ej~=0 A'-' bdg (F(x)) (DFj ) (x) v

When v corresponds to an unstable direction of F(x) with Lyapunov exponent Ai, straight-

forward but tedious manipulations show that

1
lim -log(l (DQn) (s)vll) = Ai. (7.15)

A intuitive but less precise argument that Equation (7.15) is plausible for positive Lya-

punov exponents is the following. Because of the form of the vector v, the norm of the

product matrix satisfies

II(DQn)(s)vll > 1 (DF )(x)VlI.

On the other hand, the norm of the term

00

E An-J bdg(F(x)) (DFj ) (x) v
j=O

can be bounded by the sum of a constant and a term that is strictly less than a fixed multiple

of II(DF')(x)L. Since the vector v is assumed to correspond to a positive Lyapunov

exponent, the limiting growth rate of the overall vector norm must be equal to Ai.

In order to determine if the negative Lyapunov exponents of the system F contribute

to the Lyapunov exponents of the composite system, a more delicate argument seems to be
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necessary. However, empirically, it appears that the negative Lyapunov exponents of the

nonlinear system are preserved. Two example are shown in Figures 7-5 and 7-6.

0.5

0

C
a)

a

0.
E
0
U.

-1

1.5

Both

0 10 20 30 40 50 60 70 80 90 100
Trial Number

Figure 7-5: Empirically Determined Lyapunov Exponents for the Composite System Henon
Map

10 20 30 40 50
Trial Numbei

60 70 80 90 100

Figure 7-6: Empirically Determined Lyapunov Exponents for the Composite System: Ikeda
Map

figures show Lyapunov exponents computed using the numerical algorithm suggested in
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[52]. For these examples, the composite systems are formed from the cascade of an AR

filter (poles at z = 0.6, 0.85e , 0.85e 8 ) with a Henon map (Figure 7-5) or an Ikeda map

(Figure 7-6). The equations defining the Henon maps are given by (7.11) while the Ikeda

map is defined by

x[n] 1 + u(x[n- 1] cos(t)- y[n- 1] sin(t)) 1
L y[n] J Lu(x[n- 1] sin(t) + y[n- 1] cos(t)) 

where t = 0.4- (l+z6+2). Since the Lyapunov exponents are computed numerically from

a finite number of iterates of the dynamics, their estimated values depend on the initial

condition on the system. Figures 7-5 and 7-6 show the empirically determined Lyapunov

exponents for one hundred random initial conditions. These figure seem to indicate that,

at least for these two maps, the negative Lyapunov exponents of the nonlinear system

are not affected by filtering. Indeed, extensive numerical simulations with these two chaotic

systems and many linear filters leads us to conjecture that the negative Lyapunov exponents

of general diffeomorphisms are unaffected by filtering.
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Chapter 8

Contributions and Future Work

The previous chapters presented a study of some of the geometric and statistical properties

of chaotic signals. This study was partially motivated by the need develop computational

tools address time series analysis problems involving such signals. In this chapter, we review

the major contributions of the thesis and suggest directions for future work.

8.1 Contributions

With regard to statistical properties, we defined the notion of statistics of chaotic signals

by drawing on an analogy between them stochastic processes. Concentrating on the class of

Markov maps in Chapter 3, we introduced a broad class of statistics and developed closed

form expressions for them. These expressions, which are easily computed using standard

vector and matrix operations, provided some additional insight into the statistical structure

of Markov maps. In particular, we found the their power spectra were rational functions of

frequency.

Markov maps are closely associated with the much larger class of eventually-expanding

maps as we demonstrated in Chapter 4. We used this association to extend the computa-

tional techniques developed for Markov maps to the problem of approximating the statistics

of eventually-expanding maps. Again, as with Markov maps, we inferred from this compu-

tational result some deeper properties of the statistics of the class.

From a practical standpoint, both the computational techniques for Markov maps and
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for eventually-expanding maps are general enough to be widely applied. We used this

generality in Chapter 5, where, after deriving a map describing the operation of a chaotic

power converter, we suggested a method for determining the statistics of its voltage and

current waveforms.

With regard to geometric properties, we presented in Chapter 6 a technique for analyzing

the effects of linear convolution on chaotic signals generated by one-dimensional maps. Using

this technique, we characterized the entire class of filters that does not alter the geometric

structure of the signal. These results pointed to a fundamental ambiguity in the output of

a filter driven by a one-dimensional chaotic signal; namely, we showed that there is no way

to detect that an observed signal is the result of nontrivial filtering applied to a chaotic

signal. We also showed through an example that a filtered one-dimensional chaotic system

may potentially display a geometric complexity that is absent in the unfiltered signal.

As an example of the practical application of these results, we used the knowledge of

the spectral structure of a particular Markov map and its response to filtering to synthesize

a family of "chaotic white noise generators". We also suggested a strategy for recovering a

filter's chaotic input given knowledge of the system from which it was generated.

Finally, in Chapter 7 we explored the effects of filtering on multidimensional, invertible

chaotic systems. In this case, we determined conditions on the filter under which the

geometric structure of the signal would not be obscured and discussed the implications of

this result for the design of sensors used to measure chaotic signals.

8.2 Future Work

We conclude the thesis by listing several directions for potentially important extensions of

the work we have presented.

1. Realizing Prescribed Statistics with Chaotic Maps: The results of Chapter 3

show that all Markov maps have rational spectra. It is natural to ask what subset

of rational spectra can be realized by Markov maps. As mentioned in Chapter 3, the

solution to this problem seems to be related to the properties of stochastic matrices.

Perhaps more interesting from the point of view of applications is the problem of

143

-



synthesizing an eventually expanding map that realizes or approximates a prescribed

power spectra. The solution to this problem is of potential use in certain signal

generation applications.

One approach to solving the approximation problem is based on the fact there are a

finite number of Markov maps corresponding to any fixed partition of the unit interval.

One method of approximation is to first choose a fine partition of the interval and

then compute the spectra of all possible Markov maps on this partition. The best

match could then be selected. Although this "brute force" approach seems to be

impractical-the number of possible Markov maps increases exponentially with the

number of partition elements-and provides no insight into any structure that the

solution may have, it nevertheless demonstrates that, given sufficient computational

power, a solution could be determined.

2. Approximation Error Bounds: The results of Chapter 4 show that any eventually-

expanding map is the statistical limit of a sequence of Markov maps. This result does

not, however, indicate the approximation error introduced when a fixed Markov map

is used to approximate an eventually-expanding map. Such bounds, which would be

of interest in any application using the Markov approximation scheme, would seem to

depend on the Frobenius-Perron operator. In particular, because of the close relation

between the statistics and the FP operator of a chaotic system, one avenue to pursue

in determining such bounds involves quantifying the difference in the FP operators of

the chaotic system and its Markov approximation.

3. More efficient Approximations of Eventually-Expanding Maps: Although we

suggested in Chapter 4 that many different Markov approximations of a eventually-

expanding map were possible, we focused on an approximation of a specific form in our

discussion. This raises the question as to whether another approximation exists that

is optimal in some sense. Of course, to make this problem well-posed an appropriate

optimality criterion must be defined. For example, given an eventually expanding

map and set of statistics that we desire to compute, we would like a Markov map that

"best" approximates the these statistics for a fixed number of partition elements. It
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seems plausible that results concerning approximation error bounds could be useful

in this context.

4. An Extended Analysis of a Switching Power Converter: One shortcoming

of the results of Chapter 5 is that they do not provide any methods to assist in the

design of power supplies that operate chaotically. Extensions of this work should ad-

dress the issue of developing design rules and design techniques. Furthermore, future

work should attempt to more precisely determine the advantages and disadvantages

of operating power converters in the chaotic regime.

5. Efficient Deconvolution Techniques: No attempt was made in Chapter 6 to de-

velop a computationally efficient scheme to perform the deconvolution algorithm that

we presented there. Computationally efficient methods of performing this deconvo-

lution could potentially make certain applications of chaotic signal practical. For

example, since the our deconvolution technique provides an estimate of the inverse

filter response, chaotic signals may perhaps be useful as training sequences for com-

munication channel equalizers.

6. Bounds on the Increase in Fractal Dimension Caused by Filtering: One of

the weaknesses of the analysis of Chapter 7 is that we have only established conditions

under which the fractal dimension of a chaotic signal will not increase. An interesting

issue is whether an increase in fractal dimension can be established and whether a

bound on the increase, as a function of filter parameters, can be determined.
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Appendix A

A Proof of the Statistical

Convergence of a Sequence of

Markov Approximations to an

Eventually Expanding Map

By constructing a special sequence of Markov maps, we showed in Chapter 4 that the

statistics of any eventually-expanding map can be approximated by those of a piecewise-

linear Markov map. This key result is a consequence of the assertion that the sequence

statistically convergences to the desired eventually-expanding map. In this appendix, we

show that this assertion is indeed true. More specifically, we prove the following theorem.

Theorem 12 Suppose f is an eventually expanding map. Then the sequence of piecewise

linear Markov approximations f statistically converges to f.

Proof: By the definition of statistical convergence, we must show that

Rf,h 0o . h [kl ... ,I kr, ] h Rfho [k ..., 7 kr]

for any continuous hi and all nonnegative integers ki and r. We proceed by first assuming

that fk -+ f uniformly for all finite k. We will then show that this assumption is indeed
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true.

Under our assumptions, the theorem follows from the continuity of the integral and the

weak convergence of the invariant densities (see Theorem 5). More specifically, since each hi

is continuous on [0, 1] it is uniformly continuous there. The difference between the statistics

is

Rf,h 0.... h [kl,. , k ] -Rf ,h0 ...h1[k . . ., kr] =

ho(x)hl (fk, (x)) .. h1 (fnkl (x))pn (x)dx -

J ho(x)hl (fkl (X)) .. .h (f k (x))p(x)dx

= ho(x)hl (fkl (x)) ... hi(fkL (x))(pn(x) -p(x))dx +

J (ho(x)hl (fnk (x)) ... hi (fk (x)) - ho (x)hl (fkl (x)) .. .h (fk (x)))pn (x)dx

The first term goes to zero by the weak convergence of Pn, to p. The second term goes to

zero by the uniform continuity of each hi and the uniform convergence of fki to fk,.

The proof of the theorem is completed by establishing that the uniform convergence

assumption made above always holds. This is the subject of the following lemma.

Lemma 2 The sequence of Markov approximations has the property that fJ '-4 fJ uni-

formly for each nonnegative j.

Proof: When f is continuous, the uniform convergence of fn to f implies immediately that

fJ converges uniformly to fJ. When f is not continuous, the proof is a bit more involved.

As in Chapter 4, we will need the set of partition points Qo = {aj}N and Qi =

Qi_-1 U Qi = {a-i)}, and the associated partitions i) = [a i ) a')]. It can be verified that

by construction the maps f and fn satisfy

f(I n )) C fn(I(n)) c (n-1) (A.1)j ) C fn ( j ) C Ij'~~~ (A. 1)

for some ji, which depends on j. Furthermore, it can be shown (see e.g. [25]) that the

partition elements satisfy

max lJ n ) l < dn (A.2)
$ 
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for some d < 1. From (A.1) and (A.2) it follows that

If k()- fk(X)l < Cdn- k (A.3)

for all x E [0,1], for n > k, and for some constant C. Uniform convergence of fr to fk

follows from (A.3). ·
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Appendix B

Characterizations Theorems for

Filtered Eventually Expanding

Maps

The deconvolution results of Chapter 6 depend on two theorems that characterize the effects

of filtering on signals generated by eventually expanding maps. These theorems and their

proofs are presented in this chapter.

B.1 Filters that Preserve One-State Determinism

Theorem 13 Suppose that an eventually-expanding map f is the input map to a nonzero,

invertible Mth order FIR filter b[n] and that Ob is the associated input-to-output map. Then

the filter output satisfies y[n] = g(y[n - 1]) with g eventually-expanding if and only if qb(x)

has the form

Pb = 1 o fk

for some invertible q1 and some integer k > O.

Proof: = Suppose qb = 1 o fk where qS 1 exists. Then y[n] = q 1(f(0j'y[n - 1])) =

g(y[n - 1]).
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= We present a proof by contradiction. Suppose yn = g(Yn-i) but kb is not of the form

01 of k with ql invertible. We will show that in this case, x, could not have been generated

by an eventually-expanding map.

We consider first the case where Ob = 1- Since bl is not invertible, we can find two

sequences x[n] and x'[n] such that for some L

x[L] # x'[L]

but

1 (x[L]) = <i(x'[L]). (B.1)

The resulting filtered sequences are of the form

y[n] = b[n] * x[n] (B.2)

y'[n] = b[n] * x'[n]. (B.3)

By (B.1), y[L] = y'[L]. By our assumption that the filter output is governed by a one-

dimensional map, the filtered sequences satisfy

y[n] = y'[n], n > L. (B.4)

Also, the two input sequences satisfy f(x[n]) f(x'[n]), for if not

01(XL) - 1(XL) = b[M](x[L]- x'[L]) 0

in contradiction to (B.1. Repeatedly applying the above reasoning, we find that fk(XL) #

fk(x ) for any k > 0. Thus the sequences x[n] and x'[n] differ for all n > 0.

Let the stable inverse of b[n] be denoted b[n], and let e[n] = x[n]- x[n]'. It follow

from (B.2) and (B.3) that

e[n] = b-1[n] * (y[n] - y'[n]).
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Since b[n] is FIR, the magnitude of b-'[n] must decay exponentially. Since both y[n] and

y'[n] are bounded and

y[n]-y'[n]= , n> L.

it follows that the magnitude of en can bounded by

lenI < MCYn

for some constant M and some y < 1.

Thus, the difference between the two input sequences must decay at an exponential

rate. On the other hand, we know that because f(.) is eventually-expanding, two points

that approach each other must diverge. Our hypothesis is contradicted and the theorem is

proved.

A similar argument applied to a shifted input sequence established the theorem for b

of the form 'kb = o fk 

B.1.1 Altering the Marginal PDF

Theorem 14 Consider a continuous eventually-expanding input map and suppose that a

nonzero FIR filter b[n] preserves one-state determinism. Then bn] preserves the marginal

pdf of the input if and only if b[n] = 6[n - no] for some integer no.

Proof: Suppose that b[n] = [n - no]. Then clearly the output map equals the input

map and the two invariant densities coincide.

=X Suppose that the marginal pdf of the output equals that of the input.

When f is continuous, each of its iterates fk is continuous as well. Since the input-

to-output transformation is a finite linear combination of iterates of f, kb is continuous as

well.

Since, by assumption, the output has one step determinism, Theorem 7 asserts that the

input-to-output transformation is of the form b = 01o fk for some nonnegative integer k

where •l is invertible. Suppose first that b = 1. Then according to Equation (6.11), the
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common pdf of input and output satisfies

Px (: = P (b' 1(X)) I TX Ob (X) 1. (B.5)

Because the map 0-1 is continuous and invertible its slope has constant sign. Suppose,

without loss of generality, that its slope is positive. Integrating both sides (B.5) from -o

to x we obtain

F(x) = F(-(x)) (B.6)

for each x, where F is the distribution function associated with px. The distribution function

F is continuous, monotonically nondecreasing and takes valued between 0 and 1. Applying

F - to both sides of Equation (B.6) yields q-1 (x) = x. This of course implies that X (x) = x

for all x in the support of the invariant density. By the definition of ql we have that

b[n] = n]

A similar argument applies to the more general form of db. ·
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Appendix C

Results on Filtered

Diffeomorphisms

Many of the results of Chapter 7 concerning filtered chaos depended on properties of the

state space transformation induced by filtering. In this appendix, we show that the state

space tranformation is continuous and prove a theorem that characterizes weak filters.

C.1 Continuity of the State Space Transformation

The next lemma shows that the state space transformation P (7.10)is continuous from the

attractor A to composite state space N+M

Lemma 3 The state space transformation P is continuous from A to RN+M.

Proof: Since liP(x) -P(y)llN + M = lix- ylIN + lIT(x) - T(y)lI , we need only establish

the continuity of T(x). Recall that

o

T(x) = E Akbg(F-k(x[n -1])).
k=O
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To show continuity, we note that g(x) is continuous and for any finite value of k the function

F-k is continuous by the hypothesis that F is a diffeomorphism . Rewriting T in the form

L c0
T(x) = Akbg(F-k(x)) + E Akbg(F-k(x)), (C.1)

k=O k=L+l

and noting that the first term on the right hand side of (C.1) is a finite combination of

continuous functions, we see that the continuity of T(x) follows from the continuity of the

second term of (C.1).

We will show that for each > 0 there is a > 0 such that IT(x) -T(y)j < whenever

Ix- y[[ < for all x, y A.

L oo

IT(x) - T(y) = II E Akb(g(F-k(x)) - g(F-k(y))) + j Akb(g(F-k(x))- g(F-k(Y)))I
k=O k=L+l

N oo

<- 1[EAkb(g(F-k(x)) - g(F-k(y)))[l + 11E Akb(g(F-k(x))- g(F-k(y)))11
k=O k=N+l

Since the system is stable and the function g is bounded, the integer L can always be chosen

to be large that the second term of the right side of the inequality is less than /2. Next

choose such that the first term of the inequality is less that /2 whenever ix- Yll < J.

This is always possible since the first term is continuous. a

C.2 Proof of weak filter lemma

Chapter 7 presented a characterization of weak fitlers in terms of the parameters of the

chaotic diffeomorphism and the filter. We now present a proof of this condition.

Theorem 15 Suppose that F is a dissipative diffeomorphism with Lyapunov exponents

A1 > A2 > > AN and A has eigenvalues 71,.. .,7M ordered such that 17l > 172 >

· 1Mi. Then if log(I-yl I) < AN the filter is weak.

Proof: We show that the state space transformation is bi-Lipschitz whenever the condition

of the theorem is met.
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Recall that a transformation of a compact set with bounded Jacobian is Lipschitz. Using

to the expression for the state space transformation P of (7.10) and the chain rule [54], we

obtain that the Jacobian has the form

I
DP(x) = E= AkbDg (F-k (x)) (DF-k) () 1 (C.2)

where I is the N x N identity matrix. It follows that the Jacobian is finite whenever the

sum E=0 AkbDg(F-k(x))(DF-k)(x) converges. The convergence of the sum depends on

both the linear dynamics through the matrix A and the nonlinear dynamics through the

matrix (DF-k)(x).

For large k, the Jacobian of the nonlinear dynamics (DF-k)(x) may have norm which

increases exponentially with k. This is a consequence of the sensitive dependence on initial

conditions displayed by the dynamical system F, or equivalently, the fact that F has positive

Lyapunov exponents (see Chapter 2). On the other hand, for large k the norm of the matrix

Ak decreases exponentially when the filter is stable is a stable system.

A condition that guarantees the boundedness of the Jacobian of Equation (C.2) can

be determined as follows. Suppose we simply examine the norm of the Jacobian matrix of

T(x). Using the elementary properties of matrix norms, we arrive at the following series of

inequalities:

Oo

IIT(x)I 11 E Ak(Dg)(F-k(x))(DF-k)(x)1
k=O

oo

< E 1AkbDg(F -k(X))(DF -k))ll
k=O
oo

< E IIAkllllbllllDg(F-k(x))llll(DF-k)()l11 (C.3)
k=O

The convergence of the above expression can be determined by noting that the matrix

norm II(DF-k)(x)lI is exactly the expression that occurs in the definition of the Lyapunov

exponents for the system F - 1.

According to the results of [49], the Lyapunov exponents of the inverse system are simply

related to those of the forward system. Specifically, Lyapunov exponents of F - 1 are the
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simply those of F but with opposite signs, i.e. if the Lyapunov exponents of F are ordered

such that A > A2 > ... > AN then F - ' has exponents -AN > -AN-1 > ... > -A 1 .

Intuitively, the change in sign reflects the fact that trajectories which approach one another

under the forward system diverge from one another under the inverse system. The opposite

is true of course for trajectories which diverge under the forward system. Since we are

interested in dissipative systems, the value of AN must be negative.

The norm of the Jacobian matrix II(DF-k)(x)II for large k grows at a rate determined

by the largest Lyapunov of the inverse system F - 1, and satifies the bound (DF-k)(x)ll <

Ce(IxNIl+E)k for some small e > 0 and an appropriate constant C. Furthermore, the norm of

the matrix Ak for large k decays at a rate determined by its eigenvalue of largest magnitude.

More specifically, if the eigenvalues of A are ordered as 171i > 1721 > ... 7MI then for large

k we have the inequality I}AklI < (Y1 + 6 )k where > 0 is arbitrarily small.

The condition for the convergence of the upper bound (C.3)can be determined as follows

oo N

E IJAklll bl[IJDg(F-k(X))[lll(DF-k)(X)II < IAkl[IlbllllDg(F-k(X)) lll(DF-k)(X)I1

k=O k=O
oo

+' E (1711 + )klie( 'v+e)k
k=N+l

where K is a bound on the value of IlbllIIDg(F-k(x))ll. The first term on the right is finite.

The second term is also finite under certain conditions on the filter. Specifically, since 3 and

E can be made arbitrarily small by appropriate choice of k, we conclude that the Jacobian

is bounded when 7 1elNI < 1, or alternatively, when log([yll) < AN.

When this condition is met, the transformation P is bi-Lipschitz and the filter is weak.

.
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